江西省2025届高三上学期入学摸底考试数学试题_第1页
江西省2025届高三上学期入学摸底考试数学试题_第2页
江西省2025届高三上学期入学摸底考试数学试题_第3页
江西省2025届高三上学期入学摸底考试数学试题_第4页
江西省2025届高三上学期入学摸底考试数学试题_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

绝密★启用前2025届新高三秋季入学摸底考试数学试卷试卷共4页,19小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考生必须保持答题卡的整洁.考试结束后,请将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.的虚部为()A.B.C.D.2.已知等差数列的前项和为,若,则()A.48B.42C.24D.213.已知一组数据:的平均数为6,则该组数据的分位数为()A.4.5B.5C.5.5D.64.定义运算:.已知,则()A.B.C.D.5.已知某地区高考二检数学共有8000名考生参与,且二检的数学成绩近似服从正态分布,若成绩在80分以下的有1500人,则可以估计()A.B.C.D.6.已知函数在上单调递减,则的取值范围为()A.B.C.D.7.已知圆台的上、下底面的面积分别为,侧面积为,则该圆台外接球的球心到上底面的距离为()A.B.C.D.8.已知为坐标原点,抛物线的焦点到准线的距离为1,过点的直线与交于两点,过点作的切线与轴分别交于两点,则()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数,则()A.的最小正周期为B.与有相同的最小值C.直线为图象的一条对称轴D.将的图象向左平移个单位长度后得到的图像10.已知函数,则()A.1是的极小值点B.的图象关于点对称C.有3个零点D.当时,11.已知正方体的体积为8,线段的中点分别为,动点在下底面内(含边界),动点在直线上,且,则()A.三棱锥的体积为定值B.动点的轨迹长度为C.不存在点,使得平面D.四面体DEFG体积的最大值为三、填空题:本题共3小题,每小题5分,共15分.12.已知向量,若,则__________.13.定义:如果集合存在一组两两不交(两个集合的交集为空集时,称为不交)的非空真子集,,且,那么称子集族构成集合的一个划分.已知集合,则集合的所有划分的个数为__________.14.已知为坐标原点,双曲线的左、右焦点分别为,点在以为圆心、为半径的圆上,且直线与圆相切,若直线与的一条渐近线交于点,且,则的离心率为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知中,角所对的边分别为,其中.(1)求的值;(2)若的面积为,周长为6,求的外接圆面积.16.(15分)如图,在四棱锥中,底面为正方形,分别在棱上,且四点共面.(1)证明:;(2)若,且二面角为直二面角,求平面与平面夹角的余弦值.17.(15分)已知椭圆的离心率为,右焦点为,点在上.(1)求的方程;(2)已知为坐标原点,点在直线上,若直线与相切,且,求的值.18.(17分)已知函数.(1)求曲线在点处的切线方程;(2)记(1)中切线方程为,比较的大小关系,并说明理由;(3)若时,,求的取值范围.19.(17分)已知首项为1的数列满足.(1)若,在所有中随机抽取2个数列,记满足的数列的个数为,求的分布列及数学期望;(2)若数列满足:若存在,则存在且,使得.(i)若,证明:数列是等差数列,并求数列的前项和;(ii)在所有满足条件的数列中,求使得成立的的最小值.2025届新高三秋季入学摸底考试数学参考答案及评分细则1.【答案】A【解析】,则所求虚部为-7.故选A.2.【答案】B【解析】.故选B.3.【答案】C【解析】依题意,,解得,将数据从小到大排列可得:,又,则分位数为.故选C.4.【答案】D【解析】依題意,,则,故.故选D.5.【答案】B【解析】解法一:依题意,.故选B.解法二:数学成绩在80分至95分的有人,由对称性,数学成绩在95分至110分的也有2500人,故.故选B.6.【答案】D【解析】易知在上单调递减,则只需解得.故选D.7.【答案】C【解析】依题意,记圆台的上、下底面半径分别为,则,则,设圆台的母线长为,则,解得,则圆台的高,记外接球球心到上底面的距离为,则,解得.故选C.8.【答案】C【解析】依题意,抛物线,即,则,设,直线,联立得,则.而直线,即,令,则,即,令,则,故,则,故.故选C.9.【答案】ABD(每选对1个得2分)【解析】的最小正周期,故A正确与的最小值均为-3,故B正确;因为,故C错误,故D正确.故选ABD.10.【答案】AB(每选对1个得3分)【解析】,令,解得或,故当时,当时,,当时,故1是的极小值点,故A正确:因为,故B正确;,易知的单调性一致,而,故有2个零点,故C错误;当时,,而在上单调递增,故,故D错误.故选AB.11.【答案】ACD(每选对1个得2分【解析】依题意,,而平面平面,故平面,则点到平面的距离为定值,故三棱维的体积为定值,故正确;因为,故,则,而,故,故动点的轨迹为以为圆心,为半径的圆在底面内的部分,即四分之一圆弧,故所求轨迹长度为,故B借误;以为坐标原点,所在直线分别为轴,建立如图所示的空间直角坐标系,则,故,1),设为平面的法向量,则故令,故为平面的一个法向量,设,故,则,解得,但,故C正确;因为为等腰三角形,故,而点到平的距离,令,则,则,其中,则四面体体积的最大值为,故D正确.故选ACD.12.【答案】【解析】依题意,,故,解得.13.【答案】14【解析】依题意,的2划分为,共3个,的3划分为,共1个,故集合的所有划分的个数为4.14.【答案】【解析】不妨设点在第一象限,连接,则,故,,设,因为,所以为的中点,,故.,将中,故,则.15.解:(1)由正弦定理得,因为,故,则,因为,故.(2)由题意,故.由余弦定理得,解得.故的外接圆半径,故所求外接圆面积.16.(1)证明:因为,故,则,因为平面平面,故平面,而平面平面平面,故,则.(2)解:因为二面角为直二面角,故平面平面.而平面平面平面,故平面,又底面为正方形,所以,以点为坐标原点,所在直线分别为轴,建立如图所示的空间直角坐标系,不妨设,则,故,设平面的法向量为,则令,可得.设平面的法向量为,则令,可得,故平面与平面夹角的余弦值.17.解:(1)设,依題意,解得故的方程为.(2)依题意,,联立得,故,整理得.因为,所以直线的方程为,联立解得即故故.18.解:(1)依题意,,而,故故所求切线方程为,即.(2)由(1)知,结论;,下面绘出证明:令,则,当时,单调递减,当时,单调递增,故,即.(3)依题意,,则在上恒成立,令,则,令,得,故当时,,当时,,故在区间上单调递减,在区间上单调递增,则,当时,,此时;当时,令,显然在区间上单调递增,又,故存在,使得,则,而,不合题意,舍去.综上所述,的取值范围为.19.(1)解:依题意,,故,即,故,或因为,故;则,故的可能取值为,故,故的分布列为012故.(2)(i)证明:由(1)可知,当时,或;假设此时数列中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论