版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省扬州市江都区邵凡片数学八年级第一学期期末监测模拟试题测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.下列计算正确的是()A.a2+a3=a5 B.(a2)3=a6 C.a6÷a2=a3 D.2a×3a=6a2.计算:﹣64的立方根与16的平方根的和是()A.0 B.﹣8 C.0或﹣8 D.8或﹣83.如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是()A.x>2 B.x<2 C.x>﹣1 D.x<﹣14.若直线经过第一、二、四象限,则,的取值范围是()A., B., C., D.,5.多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A.极差是47 B.众数是42C.中位数是58 D.每月阅读数量超过40的有4个月6.如图,已知AD=CB,添加下列条件还不能判定△ABC≌△BAD的是()A.AC=BD B.∠DAB=∠CBA C.∠CAB=∠DBA D.∠C=∠D=90°7.如图,∠A=20°,∠B=30°,∠C=50°,求∠ADB的度数()A.50° B.100° C.70° D.80°8.已知A(a,b),B(c,d)是一次函数y=kx﹣3x+2图象上的不同两个点,m=(a﹣c)(b﹣d),则当m<0时,k的取值范围是()A.k<3 B.k>3 C.k<2 D.k>29.点P(2018,2019)在第()象限.A.一 B.二 C.三 D.四10.正常情况下,一个成年人的一根头发大约是0.0000012千克,用科学记数法表示应该是()A.1.2×10﹣5 B.1.2×10﹣6 C.0.12×10﹣5 D.0.12×10﹣6二、填空题(每小题3分,共24分)11.若(a﹣4)2+|b﹣9|=0,则以a、b为边长的等腰三角形的周长为_______.12.若是正整数,则满足条件的的最小正整数值为__________.13.已知一个样本:98,99,100,101,1.那么这个样本的方差是_____.14.把二次根式化成最简二次根式得到的结果是______.15.如图,点P是∠AOB的角平分线上一点,PD⊥OA于点D,CE垂直平分OP,若∠AOB=30°,OE=4,则PD=______.16.如图点C,D在AB同侧,AD=BC,添加一个条件____________就能使△ABD≌△BAC.17.计算:=____.18.如图所示的坐标系中,单位长度为1,点B的坐标为(1,3),四边形ABCD的各个顶点都在格点上,点P也在格点上,的面积与四边形ABCD的面积相等,写出所有点P的坐标_____________.(不超出格子的范围)三、解答题(共66分)19.(10分)已知:等边三角形,交轴于点,,,,,且、满足.(1)如图,求、的坐标及的长;(2)如图,点是延长线上一点,点是右侧一点,,且.连接.求证:直线必过点关于轴对称的对称点;(3)如图,若点在延长线上,点在延长线上,且,求的值.20.(6分)如图,在中,平分交于点,点是边上一点,连接,若,求证:.21.(6分)先化简,再求值:y(x+y)+(x+y)(x﹣y)﹣x2,其中x=﹣2,y=.22.(8分)如图,在和中,,是的中点,于点,且.(1)求证:;(2)若,求的长.23.(8分)如图,在平面直角坐标系中,等腰直角△ABC,AB⊥BC,AB=BC,点C在第一象限.已知点A(m,0),B(0,n)(n>m>0),点P在线段OB上,且OP=OA.(1)点C的坐标为(用含m,n的式子表示)(2)求证:CP⊥AP.24.(8分)某工程队承包了某标段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进1.6米,经过5天施工,两组共掘进了45米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进1.2米,乙组平均每天能比原来多掘进1.3米.按此旄工进度,能够比原来少用多少天完成任务?25.(10分)(l)观察猜想:如图①,点、、在同一条直线上,,且,,则和是否全等?__________(填是或否),线段之间的数量关系为__________(2)问题解决:如图②,在中,,,,以为直角边向外作等腰,连接,求的长。(3)拓展延伸:如图③,在四边形中,,,,,于点.求的长.26.(10分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位长度,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2;(3)直接写出点B2,C2的坐标.
参考答案一、选择题(每小题3分,共30分)1、B【解析】根据合并同类项、幂的乘方与积的乘方、同底数幂的乘法及除法法则进行计算即可.【详解】A、错误,a1与a3不是同类项,不能合并;B、正确,(a1)3=a6,符合积的乘方法则;C、错误,应为a6÷a1=a4;D、错误,应为1a×3a=6a1.故选B.【点睛】本题考查了合并同类项,同底数的幂的乘法与除法,幂的乘方,单项式的乘法,熟练掌握运算性质是解题的关键.2、C【分析】由题意得,﹣64的立方根为﹣4,16的平方根为±4,再计算它们的和即可.【详解】解:由题意得:﹣64的立方根为﹣4,16的平方根为±4,∴﹣4+4=0或﹣4-4=-1.故选:C.【点睛】此题考查立方根的定义和平方根的定义,注意:一个正数有两个平方根;0只有一个平方根,就是0本身;负数没有平方根.3、D【解析】因为函数与的图象相交于点A(m,2),把点A代入可求出,所以点A(-1,2),然后把点A代入解得,不等式,可化为,解不等式可得:,故选D.4、C【分析】根据一次函数图象在坐标平面内的位置关系先确定k,b的取值范围,从而求解.【详解】∵一次函数的图象经过第一、二、四象限,当k>0时,直线必经过一、三象限;当k<0时,直线必经过二、四象限;∴k<0当b>0时,直线必经过一、二象限;当b<0时,直线必经过三、四象限;∴b>0故选C.【点睛】本题考查一次函数图象与系数的关系,掌握一次函数的系数与图象的关系是解题关键.5、C【解析】根据统计图可得出最大值和最小值,即可求得极差;出现次数最多的数据是众数;将这8个数按大小顺序排列,中间两个数的平均数为中位数;每月阅读数量超过40的有2、3、4、5、7、8,共六个月.【详解】A、极差为:83-28=55,故本选项错误;
B、∵58出现的次数最多,是2次,
∴众数为:58,故本选项错误;
C、中位数为:(58+58)÷2=58,故本选项正确;
D、每月阅读数量超过40本的有2月、3月、4月、5月、7月、8月,共六个月,故本选项错误;
故选C.6、C【分析】由全等三角形的判定可求解.【详解】当AC=BD时,且AD=BC,AB=AB,由“SSS”可证△ABC≌△BAD;当∠DAB=∠CBA时,且AD=BC,AB=AB,由“SAS”可证△ABC≌△BAD;当∠CAB=∠DBA时,不能判定△ABC≌△BAD;当∠C=∠D=90°时,且AD=BC,AB=AB,由“HL”可证Rt△ABC≌Rt△BAD;故选C.【点睛】本题考查了全等三角形的判定,灵活运用全等三角形的判定是本题的关键.7、B【分析】三角形一个外角等于与它不相邻的两个内角的和,根据外角的性质即可得到结论.【详解】解:∵∠AEB=∠A+∠C=20°+50°=70°,∴∠ADB=∠AEB+∠B=70°+30°=100°.故选B.【点睛】本题主要考查了三角形的外角的性质,熟练掌握三角形外角的性质是解题的关键.8、A【分析】将点A,点B坐标代入解析式可求k−1=,即可求解.【详解】∵A(a,b),B(c,d)是一次函数y=kx﹣1x+2图象上的不同两个点,∴b=ka﹣1a+2,d=kc﹣1c+2,且a≠c,∴k﹣1=.∵m=(a﹣c)(b﹣d)<0,∴k<1.故选:A.【点睛】本题考查了一次函数图象与系数的关系,一次函数图象上点的坐标特征,求出k−1=是关键,是一道基础题.9、A【分析】根据各象限内点的坐标特征解答.【详解】解:点P(2018,2019)在第一象限.故选:A.【点睛】本题考查了各象限内点的坐标的符号特征,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).10、B【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000012=1.2×10﹣1.故选B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.二、填空题(每小题3分,共24分)11、1【分析】先根据非负数的性质列式求出a、b再根据等腰三角形和三角形三边关系分情况讨论求解即可.【详解】解:根据题意得,a-4=0,b-9=0,解得a=4,b=9,①若a=4是腰长,则底边为9,三角形的三边分别为4、4、9,不能组成三角形,②若b=9是腰长,则底边为4,三角形的三边分别为9、9、4,能组成三角形,周长=9+9+4=1.【点睛】本题主要考查了等腰三角形的性质,非负数的性质,以及三角形的三边关系,解决本题的关键是要熟练掌握非负数的非负性质和三角形三边关系.12、1【分析】先化简,然后依据也是正整数可得到问题的答案.【详解】解:==,∵是正整数,∴1n为完全平方数,
∴n的最小值是1.故答案为:1.【点睛】本题主要考查的是二次根式的定义,熟练掌握二次根式的定义是解题的关键.13、2【分析】根据方差公式计算即可.方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2].【详解】解:这组样本的平均值为=(98+99+100+101+1)=100S2=[(98﹣100)2+(99﹣100)2+(100﹣100)2+(101﹣100)2+(1﹣100)2]=2故答案为2.【点睛】本题考查方差的定义.一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,14、3【分析】根据二次根式的性质进行化简即可.【详解】解:==3.故答案为:3.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.15、1【解析】过点P作PF⊥OB于点F,由角平分线的性质知:PD=PF,所以在直角△PEF中求得PF的长度即可.【详解】解:如图,过点P作PF⊥OB于点F,∵点P是∠AOB的角平分线上一点,PD⊥OA于点D,∴PD=PF,∠AOP=∠BOP=∠AOB=15°.∵CE垂直平分OP,∴OE=OP.∴∠POE=∠EPO=15°.∴∠PEF=1∠POE=30°.∴PF=PE=OE=1.则PD=PF=1.故答案是:1.【点睛】考查了角平分线的性质,线段垂直平分线的性质,由已知能够注意到PD=PF是解决的关键.16、BD=AC或∠BAD=∠ABC【分析】根据全等三角形的判定,满足SAS,SSS即可.【详解】解:∵AD=BC,AB=AB,∴只需添加BD=AC或∠BAD=∠ABC,可以利用SSS或SAS证明△ABD≌△BAC;故答案为BD=AC或∠BAD=∠ABC.【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题的关键.17、1【解析】根据算术平方根的定义进行化简,再根据算术平方根的定义求解即可.【详解】解:∵12=21,
∴=1,
故答案为:1.【点睛】本题考查了算术平方根的定义,先把化简是解题的关键.18、(0,4),(1,2),(2,0),(4,4)【分析】算出四边形ABCD的面积等于△ABC面积与△ACD面积之和即为2,同时矩形AEDC面积也为2,且E为AP1的中点,由中线平分所在三角形面积即为所求.【详解】解:∵,又,∴,又E为AP1的中点,∴DE平分△ADP1的面积,且△AED面积为1,∴△ADP1面积为2,故P1点即为所求,且P1(4,4),同理C为DP3的中点,AC平分△ADP3面积,且△ACD面积为1,故△ADP3面积为2,故P3点即为所求,且P3(1,2),由两平行线之间同底的三角形面积相等可知,过P3作AD的平行线与网格的交点P2和P4也为所求,故P2(0,4),P4(2,0),故答案为:P(0,4),(1,2),(2,0),(4,4).【点睛】考查了三角形的面积,坐标与图形性质,关键是熟练掌握中线平分所在三角形的面积,两平行线之间同底的三角形面积相等这些知识点.三、解答题(共66分)19、(1)A(-3,0),B(1,0),CD=2;(2)见解析;(3)6.【分析】(1)首先利用绝对值的非负性得出,即可得出点A、B的坐标;得出AB、BC,然后由∠CBA=60°得出∠ODB=30°,进而得出BD,得出CD;(2)首先判定△CEP、△ABC为等边三角形,进而判定△CBE≌△CAP,然后利用角和边的关系得出DO=OF,即可判定点D、F关于轴对称,直线必过点关于轴对称的对称点;(3)作DI∥AB,判定△CDI为等边三角形,然后判定△MDI≌△NDB,得出NB=MI,进而得出的值.【详解】(1)∵,即∴∴∴A(-3,0),B(1,0),∴AB=BC=4,∵∠CBA=60°∴∠ODB=30°∴BD=2OB=2∴CD=BC-BD=4-2=2;(2)延长EB交轴于F,连接CE,如图所示:∵,∴△CEP为等边三角形∴∠ECP=60°,CE=CP由(1)中得知,△ABC为等边三角形∴∠ACB=60°,CA=CB∴∠ACB+∠BCP=∠ECP+∠BCP∴∠ACP=∠BCE∴△CBE≌△CAP(SAS)∴∠CEB=∠CPA∴∠EBP=∠ECP=60°∴∠FBO=∠DBO=60°∴∠BFO=∠BDO=30°∴BD=BF∵BO⊥DF∴DO=OF∴点D、F关于轴对称∴直线必过点关于轴对称的对称点;(3)过点D作DI∥AB交AC于I,如图所示:由(2)中△ABC为等边三角形,则△CDI为等边三角形,∴DI=CD=DB∴∠MID=120°=∠DBN∴△MDI≌△NDB(AAS)∴NB=MI∴AN-AM=(AB+NB)-AM=AB+MI-AM=AB+AI=AB+BD=4+2=6【点睛】此题主要考查等边三角形的性质以及全等三角形的判定与性质等知识,熟练掌握,即可解题.20、证明见解析【分析】先求出∠BAC的度数,进而得出∠BAD,因为∠BAD=40°=∠ADE,由“内错角相等,两直线平行”即可判断.【详解】证明:在中,,平分,【点睛】本题考查角的运算,角平分线的性质定理以及平行线的判定,掌握角平分线的性质是解题的关键.21、-1.【解析】分析:先根据单项式乘多项式的法则,平方差公式化简,再代入数据求值.详解:y(x+y)+(x+y)(x-y)-x2,=xy+y2+x2-y2-x2,=xy,当x=-2,y=时,原式=-2×=-1.点睛:本题考查了单项式乘多项式,平方差公式,关键是先把代数式化简,再把题目给定的值代入求值,熟练掌握运算法则和公式是解题的关键.22、(1)详见解析;(2)【分析】(1)由直角三角形性质,得到,利用AAS证明,即可得到结论;(2)由(1)可知,,点E是BC中点,即可得到,即可得到答案.【详解】解:(1)证明:∵,,∴,,∴.∵,∴∴.(2)由,得,∵是的中点,∴.∵,,∴,∴;【点睛】本题考查了全等三角形的判定和性质,直角三角形的性质,以及线段中点,解题的关键是正确找到证明三角形全等的条件,从而进行解答.23、(1)(n,m+n);(2)详见解析.【分析】(1)过点C作CD⊥y轴于点D,由“AAS”可证△CDB≌△BOA,可得BO=CD=n,AO=BD=m,即可求解;(2)由线段的和差关系可得DP=n=DC,可得∠DPC=45°,可得结论.【详解】(1)如图,过点C作CD⊥y轴于点D,∴∠CDB=90°,∴∠DCB+∠DBC=90°,且∠ABO+∠CBD=90°,∴∠DCB=∠ABO,且AB=BC,∠CDB=∠AOB=90°,∴△CDB≌△BOA(AAS)∴BO=CD=n,AO=BD=m,∴OD=m+n,∴点C(n,m+n),故答案为:(n,m+n);(2)∵OP=OA=m,OD=m+n,∴DP=n=DC,∠OPA=45°,∴∠DPC=45°,∴∠APC=90°,∴AP⊥PC.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,证明△CDB≌△BOA是本题的关键.24、(1)甲班组平均每天掘进4.8米,乙班组平均每天掘进4.2米;(2)少用11天完成任务.【分析】(1)设甲、乙班组平均每天掘进x米,y米,根据已知甲组比乙组平均每天多掘进1.6米,经过5天施工,两组共掘进了45米两个关系列方程组求解.(2)由(1)和在剩余的工程中,甲组平均每天能比原来多掘进1.2米,乙组平均每天能比原来多掘进1.3米分别求出按原来进度和现在进度的天数,即求出少用天数.【详解】(1)设甲、乙班组平均每天掘进x米,y米,得,解得.∴甲班组平均每天掘进4.8米,乙班组平均每天掘进4.2米.(2)设按原来的施工进度和改进施工技术后的进度分别还需a天,b天完成任务,则a=(1755﹣45)÷(4.8+4.2)=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 阿基米德原理
- 掘进工安全生产岗位责任制
- 岗位职责班组管理规章制度
- 客户答谢会讲义
- 人教部编版四年级语文上册第8课《蝴蝶的家》精美课件
- 【寒假阅读提升】四年级下册语文试题-现代文阅读(一)-人教部编版(含答案解析)
- 2024年成都客运资格证技巧
- 2024年银川客运从业资格证考题
- 2024年新疆客运考试模拟题及答案详解解析
- 2024年武汉道路旅客运输资格证从业考试
- 职业生涯规划医学生
- 医学课件指骨骨折
- 拜占庭历史与文化智慧树知到期末考试答案2024年
- 反应釜验证方案样本
- S2-旋挖桩机安装拆卸专项方案
- 二年级下册语文课件-作文指导:13-通知(23张PPT) 部编版
- 普通高中物理课程标准解读
- 成人失禁相关性皮炎的预防与护理-护理团标
- 西南师大版二年级下册三位数加减混合运算200题及答案
- 国外保护非物质文化遗产的现状
- 瓜子二手车商业计划书
评论
0/150
提交评论