版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省南充市南部县2025届数学八上期末经典模拟试题题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,直线与直线交于点,则方程组解是()A. B. C. D.2.已知x=2my=3m是二元一次方程2x+y=14的解,则m的值是(A.2 B.-2 C.3 D.-33.下列图形中是轴对称图形的有()A. B. C. D.4.方格纸上有、两点,若以点为原点建立直角坐标系,则点坐标为,若以点为原点建立直角坐标系,则点坐标是()A. B. C. D.5.下列交通标志,不是轴对称图形的是()A. B. C. D.6.如果水位下降记作,那么水位上升记作()A. B. C. D.7.若等腰三角形中有两边长分别为2和5,则这个三角形的周长为()A.9 B.12 C.7或9 D.9或128.下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是()A.甲比乙的成绩稳定B.乙比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定谁的成绩更稳定9.某玩具车间每天能生产甲种玩具零件200个或乙种玩具零件100个,甲种玩具零件1个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在30天内组装出最多的玩具?设生产甲种玩具零件x天,生产乙种玩具零件y天,则有()A. B. C. D.10.如图,为等边三形内的一点,,将线段以点为旋转中心逆时针旋转60°得到线段,下列结论:①点与点的距离为5;②;③可以由绕点进时针旋转60°得到;④点到的距离为3;⑤,其中正确的有()A.2个 B.3个 C.4个 D.5个11.如图,△ABO关于x轴对称,若点A的坐标为(a,b),则点B的坐标为()A.(b,a) B.(﹣a,b) C.(a,﹣b) D.(﹣a,﹣b)12.立方根是-3的数是().A.9 B.-27 C.-9 D.27二、填空题(每题4分,共24分)13.如图,在Rt△ABC中,∠C=90°,以点A为圆心,任意长为半径画弧,分别交AC、AB于点M、N,再分别以M、N为圆心,任意长为半径画弧,两弧交于点O,作射线AO交BC于点D,若CD=3,P为AB上一动点,则PD的最小值为_____.14.已知,点在第二象限,则点在第_________象限.15.分解因式:3m2﹣6mn+3n2=_____.16.甲乙丙丁四位同学在5次数学测试中,他们成绩的平均数相同,方差分别为,,,,则成绩最稳定的同学是______.17.如图,,则的度数为_____________;18.点关于轴对称的点的坐标是__________.三、解答题(共78分)19.(8分)甲、乙两人同时从相距千米的地匀速前往地,甲乘汽车,乙骑电动车,甲到达地停留半个小时后按原速返回地,如图是他们与地之间的距离(千米)与经过的时间(小时)之间的函数图像.(1),并写出它的实际意义;(2)求甲从地返回地的过程中与之间的函数表达式,并写出自变量的取值范围;(3)已知乙骑电动车的速度为千米/小时,求乙出发后多少小时与甲相遇?20.(8分)阅读下列材料,并按要求解答.(模型建立)如图①,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△BEC≌△CDA.(模型应用)应用1:如图②,在四边形ABCD中,∠ADC=90°,AD=6,CD=8,BC=10,AB2=1.求线段BD的长.应用2:如图③,在平面直角坐标系中,纸片△OPQ为等腰直角三角形,QO=QP,P(4,m),点Q始终在直线OP的上方.(1)折叠纸片,使得点P与点O重合,折痕所在的直线l过点Q且与线段OP交于点M,当m=2时,求Q点的坐标和直线l与x轴的交点坐标;(2)若无论m取何值,点Q总在某条确定的直线上,请直接写出这条直线的解析式.21.(8分)列方程解应用题:第19届亚洲运动会将于2022年9月10日至25日在杭州举行,杭州奥体博览城将成为杭州2022年亚运会的主场馆,某工厂承包了主场馆建设中某一零件的生产任务,需要在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数.(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.22.(10分)如图,已知中,,,点为的中点,如果点在线段上以的速度由点向点运动,同时,点在线段上由点向点运动.(1)若点与点的运动速度相等,经过1秒后,与是否全等?请说明理由;(2)若点与点的运动速度不相等,当点的运动速度为多少时,能使与全等?23.(10分)如图某船在海上航行,在A处观测到灯塔B在北偏东60°方向上,该船以每小时15海里的速度向东航行到达C处,观测到灯塔B在北偏东30°方向上,继续向东航行到D处,观测到灯塔B在北偏西30°方向上,当该船到达D处时恰与灯塔B相距60海里.(1)判断BCD的形状;(2)求该船从A处航行至D处所用的时间.24.(10分)若与成正比例,且时,.(1)求该函数的解析式;(2)求出此函数图象与,轴的交点坐标,并在本题所给的坐标系中画出此函数图象.25.(12分)解方程:=1.26.计算与化简:①;②;③已知,求的值.④(利用因式分解计算)
参考答案一、选择题(每题4分,共48分)1、B【分析】根据一次函数与二元一次方程组的关系解答即可.【详解】∵直线与直线交于点,∴方程组即的解是.故选B.【点睛】本题主要考查一次函数函数与二元一次方程组的关系,函数图象交点坐标为两函数解析式组成的方程组的解.2、A【解析】根据方程的解的定义,将方程1x+y=14中x,y用m替换得到m的一元一次方程,进行求解.【详解】将x=2my=3m代入二元一次方程1x+y=147m=14,解得m=1.故选A.【点睛】考查了二元一次方程的解的定义,只需把方程的解代入,进一步解一元一次方程即可.3、B【解析】根据轴对称图形的定义,逐一判断选项,即可得到答案.【详解】A.是中心对称图形,不是轴对称图形,不符合题意,B.是轴对称图形,符合题意,C.是中心对称图形,不是轴对称图形,不符合题意,D.既不是中心对称图形,也不是轴对称图形,不符合题意,故选B.【点睛】本题主要考查轴对称图形的定义,掌握轴对称图形的定义,是解题的关键.4、C【分析】明确A、B的坐标位置,即可判定坐标.【详解】以B为原点建立平面直角坐标系,则A点的坐标为(3,4);若以A点为原点建立平面直角坐标系,则B点在A点左3个单位,下4个单位处.故B点坐标为(-3,-4).故答案为C.【点睛】此题主要考查平面直角坐标系中用坐标表示位置,熟练掌握其性质,即可解题.5、C【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;依次进行判断即可.【详解】根据轴对称图形的意义可知:A选项:是轴对称图形;B选项:是轴对称图形;C选项:不是轴对称图形;D选项:是轴对称图形;故选:C.【点睛】考查了轴对称图形的意义,解题关键利用了:判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.6、A【解析】根据正负数的意义:表示具有相反意义的量,即可判断.【详解】解:如果水位下降记作,那么水位上升记作故选A.【点睛】此题考查的是正负数意义的应用,掌握正负数的意义:表示具有相反意义的量是解决此题的关键.7、B【解析】试题分析:考点:根据等腰三角形有两边相等,可知三角形的三边可以为2,2,5;2,5,5,然后根据三角形的三边关系可知2,5,5,符合条件,因此这个三角形的周长为2+5+5=1.故选B考点:等腰三角形,三角形的三边关系,三角形的周长8、B【详解】通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定,故选B.9、C【解析】根据题意可以列出相应的二元一次方程组,本题得以解决.【详解】由题意可得,,故答案为C【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的方程组.10、B【分析】连结DD′,根据旋转的性质得AD=AD′,∠DAD′=60°,可判断△ADD′为等边三角形,则DD′=5,可对①进行判断;由△ABC为等边三角形得到AB=AC,∠BAC=60°,则把△ABD逆时针旋转60°后,AB与AC重合,AD与AD′重合,于是可对③进行判断;再根据勾股定理的逆定理得到△DD′C为直角三角形,则可对②④进行判断;由于S四边形ADCD′=S△ADD′+S△D′DC,利用等边三角形的面积公式和直角三角形面积公式计算后可对⑤进行判断.【详解】解:连结DD′,如图,∵线段AD以点A为旋转中心逆时针旋转60°得到线段AD′,∴AD=AD′,∠DAD′=60°,∴△ADD′为等边三角形,∴DD′=5,所以①正确;∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,∴把△ABD逆时针旋转60°后,AB与AC重合,AD与AD′重合,∴△ACD′可以由△ABD绕点A逆时针旋转60°得到,所以③正确;∴D′C=DB=4,∵DC=3,在△DD′C中,∵32+42=52,∴DC2+D′C2=DD′2,∴△DD′C为直角三角形,∴∠DCD′=90°,∵△ADD′为等边三角形,∴∠ADD′=60°,∴∠ADC≠150°,所以②错误;∵∠DCD′=90°,∴DC⊥CD′,∴点D到CD′的距离为3,所以④正确;∵S四边形ADCD′=S△ADD′+S△D′DC=,所以⑤错误.故选:B.【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线的夹角等于旋转角.也考查了等边三角形的判定与性质以及勾股定理的逆定理.11、C【分析】由于△ABO关于x轴对称,所以点B与点A关于x轴对称.根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于x轴对称的点,横坐标相同,纵坐标互为相反数,得出结果.【详解】由题意,可知点B与点A关于x轴对称,又∵点A的坐标为(a,b),∴点B的坐标为(a,−b).故选:C.【点睛】本题考查了平面直角坐标系中关于x轴成轴对称的两点的坐标之间的关系.能够根据题意得出点B与点A关于x轴对称是解题的关键.12、B【分析】本题考查了立方根的概念,任何正数都有立方根,它们和被开方数的符号相同.由于立方根和立方为互逆运算,因此只需求-3的立方即可.【详解】解:立方根是-3的数是=−1.
故选:B.【点睛】了解立方根和立方为互逆运算,是理解立方根的关键.二、填空题(每题4分,共24分)13、3【解析】根据角平分线的作法可知,AD是∠BAC的平分线,再根据角平分线上的点到角的两边距离相等,即可求解.【详解】根据作图的过程可知,AD是∠BAC的平分线.根据角平分线上的点到角的两边距离相等,又因为点到直线的距离,垂线段最短可得PD最小=CD=3.故答案为:3.【点睛】本题考查的知识点是基本作图,解题关键是掌握角平分线的做法和线段垂直平分线的判定定理.14、四【分析】首先根据点A所在的象限可判定,然后即可判定点B所在的象限.【详解】∵点在第二象限,∴∴∴点B在第四象限故答案为四.【点睛】此题主要考查根据坐标判定点所在的象限,熟练掌握,即可解题.15、3(m-n)2【解析】原式==故填:16、丁【分析】根据方差进行判断即可.【详解】∵,,,,∴丁的方差最小,∴成绩最稳定的同学是丁.故答案为:丁.【点睛】本题考查了方差,明确方差的意义是解题的关键.17、100°【分析】根据三角形的外角性质计算即可.【详解】解:∠BEA是△ACE的外角,
∴∠BEA=∠A+∠C=70°,
∠BDA是△BDE的外角,
∴∠BDA=∠BEA+∠B=100°,
故答案为:100°.【点睛】本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.18、(2,-1)【分析】关于轴对称的点坐标(横坐标不变,纵坐标变为相反数)【详解】点关于轴对称的点的坐标是(2,-1)故答案为:(2,-1)【点睛】考核知识点:用坐标表示轴对称.理解:关于x轴对称的点的坐标的特点是:横坐标不变,纵坐标互为相反数;三、解答题(共78分)19、(1)2.5;甲从A地到B地,再由B地返回到A地一共用了2.5小时;(2)y=-90x+225(1.5≤x≤2.5);(3)1.8小时.【分析】(1)根据路程÷时间可得甲人的速度,即可求得返回的时间,从而可求出a的值;(2)设y与x之间的函数关系式为y=kx+b,根据图象可得直线经过(1.5,90)以及(2.5,0),利用待定系数法把此两点坐标代入y=kx+b,即可求出一次函数关系式,根据返回可得自变量的取值范围;(3)求出乙的函数关系式,联立方程组求解即可.【详解】(1)90÷1=90(千米/时);90÷90=1(小时)∴a=1.5+1=2.5(时)A表示的实际意义是:甲从A地到B地,再由B地返回到A地一共用了2.5小时;(2)设甲从B地返回A地的过程中,y与x之间的函数关系式为y=kx+b,根据图象知,直线经过(1.5,90)和(2.5,0),解得,所以y=-90x+225(1.5≤x≤2.5);(3)由乙骑电动车的速度为35千米/小时,可得:y=35x,由,解得,答:乙出发后1.8小时和甲相遇.【点睛】此题主要考查了一次函数的应用,关键是看懂图象所表示的意义,利用待定系数法求出甲从B地返回A地的过程中,y与x之间的函数关系式.20、模型建立:见解析;应用1:2;应用2:(1)Q(1,3),交点坐标为(,0);(2)y=﹣x+2【分析】根据AAS证明△BEC≌△CDA,即可;应用1:连接AC,过点B作BH⊥DC,交DC的延长线于点H,易证△ADC≌△CHB,结合勾股定理,即可求解;应用2:(1)过点P作PN⊥x轴于点N,过点Q作QK⊥y轴于点K,直线KQ和直线NP相交于点H,易得:△OKQ≌△QHP,设H(2,y),列出方程,求出y的值,进而求出Q(1,3),再根据中点坐标公式,得P(2,2),即可得到直线l的函数解析式,进而求出直线l与x轴的交点坐标;(2)设Q(x,y),由△OKQ≌△QHP,KQ=x,OK=HQ=y,可得:y=﹣x+2,进而即可得到结论.【详解】如图①,∵AD⊥ED,BE⊥ED,∠ACB=90°,∴∠ADC=∠BEC=90°,∴∠ACD+∠DAC=∠ACD+∠BCE=90°,∴∠DAC=∠BCE,∵AC=BC,∴△BEC≌△CDA(AAS);应用1:如图②,连接AC,过点B作BH⊥DC,交DC的延长线于点H,∵∠ADC=90°,AD=6,CD=8,∴AC=10,∵BC=10,AB2=1,∴AC2+BC2=AB2,∴∠ACB=90°,∵∠ADC=∠BHC=∠ACB=90°,∴∠ACD=∠CBH,∵AC=BC=10,∴△ADC≌△CHB(AAS),∴CH=AD=6,BH=CD=8,∴DH=6+8=12,∵BH⊥DC,∴BD==2;应用2:(1)如图③,过点P作PN⊥x轴于点N,过点Q作QK⊥y轴于点K,直线KQ和直线NP相交于点H,由题意易:△OKQ≌△QHP(AAS),设H(2,y),那么KQ=PH=y﹣m=y﹣2,OK=QH=2﹣KQ=6﹣y,又∵OK=y,∴6﹣y=y,y=3,∴Q(1,3),∵折叠纸片,使得点P与点O重合,折痕所在的直线l过点Q且与线段OP交于点M,∴点M是OP的中点,∵P(2,2),∴M(2,1),设直线QM的函数表达式为:y=kx+b,把Q(1,3),M(2,1),代入上式得:,解得:∴直线l的函数表达式为:y=﹣2x+5,∴该直线l与x轴的交点坐标为(,0);(2)∵△OKQ≌△QHP,∴QK=PH,OK=HQ,设Q(x,y),∴KQ=x,OK=HQ=y,∴x+y=KQ+HQ=2,∴y=﹣x+2,∴无论m取何值,点Q总在某条确定的直线上,这条直线的解析式为:y=﹣x+2,故答案为:y=﹣x+2.【点睛】本题主要考查三角形全等的判定和性质定理,勾股定理,一次函数的图象和性质,掌握“一线三垂直”模型,待定系数法是解题的关键.21、(1)原计划每天生产的零件2400个,规定的天数是10天;(2)原计划安排的工人人数480人.【分析】(1)根据题意可设原计划每天生产的零件x个,根据时间是一定的,列出方程求得原计划每天生产的零件个数,再根据工作时间=工作总量÷工作效率,即可求得规定的天数;
(2)设原计划安排的工人人数为y人,根据等量关系:恰好提前两天完成2400个零件的生产任务,列出方程求解即可.【详解】(1)解:设原计划每天生产的零件x个,由题意得,得:x=2400经检验,x=2400是原方程的根,且符合题意.∴规定的天数为24000÷2400=10(天).答:原计划每天生产的零件2400个,规定的天数是10天;(2)设原计划安排的工人人数为y人,依题意有[5×20×(1+20%)×+2400]×(10﹣2)=24000,解得y=480,经检验,y=480是原方程的根,且符合题意.答:原计划安排的工人人数480人.【点睛】本题考查了分式方程的应用,一元一次方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.22、(1)全等;(2)不相等,当点的运动速度为时,能使与全等.【分析】(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,由已知可得BD=PC,BP=CQ,∠ABC=∠ACB,即据SAS可证得△BPD≌△CQP;
(2)可设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等,则可知PB=3tcm,PC=8-3tcm,CQ=xtcm,据(1)同理可得当BD=PC,BP=CQ或BD=CQ,BP=PC时两三角形全等,求x的解即可.【详解】解:(1)全等.理由如下:中,,,由题意可知,,经过1秒后,,,,在和中,,;(2)设点的运动速度为,经过与全等,则可知,,,,根据全等三角形的判定定理可知,有两种情况:①当,时,且,解得,,,∴舍去此情况;②当,时,且,解得,,故若点与点的运动速度不相等,则当点的运动速度为时,能使与全等.【点睛】本题主要考查了全等三角形全等的判定,涉及到等腰三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.23、(1)等边三角形;(2)8小时【分析】(1)根据题意可得∠BCD=∠BDC=60°,即可知△BCD是等边三角形;
(2)由(1)可求得BC,CD的长,然后易证得△ABC是等腰三角形,继而求得AD的长,则可求得该船从A处航行至D处所用的时间;【详解】解:(1)根据题意得:∠BCD=90°-30°=60°,∠BDC=90°-30°=60°,
∴∠BCD=∠BDC=60°,
∴BC=BD,
∴△BCD是等边三角形;
(2)∵△BCD是等边三角形,
∴CD=BD=BC=60海里,
∵∠BAC=90°-60°=30°,
∴∠ABC=∠BCD-∠BAC=30°,
∴∠BAC=∠ABC,
∴AC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 阿基米德原理
- 掘进工安全生产岗位责任制
- 岗位职责班组管理规章制度
- 客户答谢会讲义
- 人教部编版四年级语文上册第8课《蝴蝶的家》精美课件
- 【寒假阅读提升】四年级下册语文试题-现代文阅读(一)-人教部编版(含答案解析)
- 2024年成都客运资格证技巧
- 2024年银川客运从业资格证考题
- 2024年新疆客运考试模拟题及答案详解解析
- 2024年武汉道路旅客运输资格证从业考试
- 病理学实验2024(临床 口腔)学习通超星期末考试答案章节答案2024年
- 半期评估试卷(1-4单元)-2024-2025学年四年级上册数学北师大版
- 门诊导诊课件
- 2024年河北廊坊开发区管理委员招聘笔试参考题库附带答案详解
- 大班科学活动《认识牙齿》ppt课件
- T∕CSCB 0005-2021 人诱导多能干细胞
- 国家级灯具检验报告路灯
- 温室大棚、花卉苗圃采暖项目设计方案
- 山西省蒲县高阁村煤层火灾治理工程施工组织设计(总
- 完整版楚雄彝族自治州城乡规划管理技术规定试行7月16日定稿
- 建设项目环境保护设施竣工验收监测技术要求
评论
0/150
提交评论