版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届苏州市吴江区数学八年级第一学期期末调研模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.下列各组线段中,能够组成直角三角形的一组是(
)A.1,2,3 B.2,3,4 C.4,5,6 D.1,,2.如果是方程ax+(a-2)y=0的一组解,则a的值是()A.1 B.-1 C.2 D.-23.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC的三条中线的交点 B.△ABC三边的中垂线的交点C.△ABC三条角平分线的交点 D.△ABC三条高所在直线的交点.4.如图,小明书上的三角形被墨迹遮挡了一部分,测得两个角的度数为32°、74°,于是他很快判断这个三角形是()A.等边三角形 B.等腰三角形 C.直角三角形 D.钝角三角形5.2211年3月11日,里氏1.2级的日本大地震导致当天地球的自转时间较少了2.22222216秒,将2.22222216用科学记数法表示为()A. B. C. D.6.下列命题中,为真命题的是()A.直角都相等 B.同位角相等 C.若,则 D.若,则7.牛顿曾说过:“反证法是数学家最精良的武器之一.”那么我们用反证法证明:“在一个三角形中,至少有一个内角小于或等于60°”时,第一步先假设()A.三角形中有一个内角小于60°B.三角形中有一个内角大于60°C.三角形中每个内角都大于60°D.三角形中没有一个内角小于60°8.满足下列条件的是直角三角形的是()A.,, B.,,C. D.9.如图,△ABC的面积是1cm2,AD垂直于∠ABC的平分线BD于点D,连接DC,则与△BDC面积相等的图形是()A. B. C. D.10.如图,在△ABC中,AB=AC,依据尺规作图的痕迹,判断下列结论错误的是()A.AD⊥BC B.BD=CD C.DE∥AB D.DE=BD11.一个多边形的内角和是外角和的2倍,这个多边形是()A.四边形 B.五边形 C.六边形 D.八边形12.下列长度的三条线段能组成三角形的是()A. B. C. D.二、填空题(每题4分,共24分)13.已知am=2,an=3,则am-n=_____.14.如图所示,是由截面相同的长方形墙砖粘贴的部分墙面,根据图中信息可得每块墙砖的截面面积是__________.15.若正多边形的每一个内角为,则这个正多边形的边数是__________.16.2015年诺贝尔生理学或医学奖得主中国科学家屠呦呦,发现了一种病毒的长度约为0.00000456毫米,则数据0.00000456用科学记数法表示为_________.17.已知,如图,中,,,为形内一点,若,,则的度数为__________.18.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,CD是斜边AB上的高,AD=3,则线段BD的长为___.三、解答题(共78分)19.(8分)如图,三个顶点的坐标分别为、、.(1)若与关于y轴成轴对称,则三个顶点坐标分别为_________,____________,____________;(2)若P为x轴上一点,则的最小值为____________;(3)计算的面积.20.(8分)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小明以灵感,他惊喜的发现,当两个全等的直角三角形如图①或图②摆放时,都可以用“面积法”来证明,下面是小明利用图①证明勾股定理的过程:将两个全等的直角三角形按图①所示摆放,其中∠DAB=90°,求证:证明:连结DB,过点D作BC边上的高DF,则DF=EC=b-a,FC=DE=b,∵请参照上述证法,利用图②完成下面的证明:将两个全等的直角三角形按图②所示摆放,其中∠DAB=90°.求证:21.(8分)已知如图,等边的边长为,点分别从、两点同时出发,点沿向终点运动,速度为;点沿,向终点运动,速度为,设它们运动的时间为.(1)当为何值时,?当为何值时,?(2)如图②,当点在上运动时,与的高交于点,与是否总是相等?请说明理由.22.(10分)探索与证明:(1)如图①,直线经过正三角形的顶点,在直线上取点,,使得,.通过观察或测量,猜想线段,与之间满足的数量关系,并予以证明;(2)将(1)中的直线绕着点逆时针方向旋转一个角度到如图②的位置,,.通过观察或测量,猜想线段,与之间满足的数量关系,并予以证明.23.(10分)图①、图②均是6×6的正方形网格,每个小正方形的顶点叫做格点,每个小正方形的边长均为1.(1)在图①中,以格点为端点,画线段MN=.(2)在图②中,以格点为顶点,画正方形ABCD,使它的面积为2.24.(10分)如图,方格图中每个小正方形的边长为1,点A、B、C都是格点.(1)画出△ABC关于直线BM对称的△A1B1C1;(2)写出AA1的长度.25.(12分)某公司生产一种原料,运往A地和B地销售.如表记录的是该产品运往A地和B地供应量y1(kg)、y2(kg)与销售价格x(元)之间的关系:销售价格x(元)100150200300运往A地y1(kg)300250200100运往B地y2(kg)450350250n(1)请认真分析上表中所给数据,用你所学过的函数来表示其变化规律,并验证你的猜想,分别求出y1与x、y2与x的函数关系式;(2)用你求出的函数关系式完成上表,直接写出n=;(3)直接写出销售价格在元时,该产品运往A地的供应量等于运往B地的供应量.26.2018年10月24日上午9时,港珠澳大桥正式通车,它是世界上最长的跨海大桥,桥长约千米,是原来开车从香港到珠海路程的;港珠澳大桥连起了世界最具活力经济区,快速通道的建成对香港、澳门、珠海三地经济社会一体化意义深远.开车从香港到珠海所需时间缩短了约小时,若现在开车从香港到珠海的平均速度是原来平均速度的倍.求:(1)原来开车从香港到珠海的路程;(2)现在开车从香港到珠海的平均速度.
参考答案一、选择题(每题4分,共48分)1、D【解析】试题分析:A.,不能组成直角三角形,故错误;B.,不能组成直角三角形,故错误;C.,不能组成直角三角形,故错误;D.,能够组成直角三角形,故正确.故选D.考点:勾股定理的逆定理.2、B【解析】将代入方程ax+(a−2)y=0得:−3a+a−2=0.解得:a=−1.故选B.3、C【分析】由于凉亭到草坪三条边的距离相等,所以根据角平分线上的点到边的距离相等,可知是△ABC三条角平分线的交点.由此即可确定凉亭位置.【详解】解:∵凉亭到草坪三条边的距离相等,
∴凉亭选择△ABC三条角平分线的交点.
故选:C.【点睛】本题主要考查的是角平分线的性质在实际生活中的应用.主要利用了利用了角平分线上的点到角两边的距离相等.4、B【分析】根据三角形的内角和是180°,求得第三个内角的度数,然后根据角的度数判断三角形的形状.【详解】第三个角的度数=180°-32°-74°=74°,所以,该三角形是等腰三角形.故选B.【点睛】此题考查了三角形的内角和公式以及三角形的分类.5、A【分析】科学记数法的表示形式为a×12n的形式,其中1≤|a|<12,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】,故选A.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×12n的形式,其中1≤|a|<12,n为整数,表示时关键要正确确定a的值以及n的值.6、A【分析】根据直角、同位角的性质,平方与不等式的性质依次分析即可.【详解】A.直角都相等90°,所以此项正确;B.两直线平行,同位角相等,故本选项错误;C.若,则或,故本选项错误;D.若,则,本项正确,故选A.【点睛】本题考查的是命题与定理,熟知各项性质是解答此题的关键.7、C【分析】根据反证法的步骤中,第一步是假设结论不成立,反面成立解答.【详解】解:用反证法证明:“在一个三角形中,至少有一个内角小于或等于60°”时,第一步先假设三角形中每个内角都大于60°,故选:C.【点睛】此题考查反证法,解题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.8、C【分析】要判断一个角是不是直角,先要知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【详解】A.若BC=4,AC=5,AB=6,则BC2+AC2≠AB2,故△ABC不是直角三角形;B.若,,,则AC2+AB2≠CB2,故△ABC不是直角三角形;C.若BC:AC:AB=3:4:5,则BC2+AC2=AB2,故△ABC是直角三角形;D.若∠A:∠B:∠C=3:4:5,则∠C<90°,故△ABC不是直角三角形;故答案为:C.【点睛】本题主要考查了勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.9、D【分析】利用等腰三角形“三线合一”的性质以及与三角形中线有关的面积计算,求得阴影面积为0.5,再计算各选项中图形的面积比较即可得出答案.【详解】延长AD交BC于E,∵BD是∠ABC平分线,且BD⊥AE,根据等腰三角形“三线合一”的性质得:AD=DE,∴,,∴,A、,不符合题意;B、,不符合题意;C、,不符合题意;D、,符合题意;故选:D.【点睛】本题考查了等腰三角形的判定和性质,三角形中线有关的面积计算,熟知等腰三角形“三线合一”的性质是解题的关键.10、D【分析】由尺规作图痕迹可知AD是∠BAC平分线,另一条为AC的垂直平分线,由此即可求解.【详解】解:如下图所示,由尺规作图痕迹可知AD是∠BAC平分线,EF是AC的垂直平分线,
又已知AB=AC,∴由等腰三角形的“三线合一”性质可知,AD是底边BC上的高,AD是△ABC的中线,∴AD⊥BC,BD=CD,故选项A和选项B正确,又EF是AC的垂直平分线,∴E是AC的中点,由直角三角形斜边上的中线等于斜边的一半可知,EA=ED,∴∠EAD=∠EDA,又∠EAD=∠BAD,∴∠EDA=∠BAD,∴DEAB,∴选项C正确,选项D缺少已知条件,推导不出来,故选:D.【点睛】本题考查了尺规作图角平分线和垂直平分线的作法、等腰三角形的性质等,熟练掌握其作图方法及其性质是解决本题的关键.11、C【分析】此题可以利用多边形的外角和和内角和定理求解.【详解】解:设所求多边形边数为n,由题意得(n﹣2)•180°=310°×2解得n=1.则这个多边形是六边形.故选C.【点睛】本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征:任何多边形的外角和都等于310°,n边形的内角和为(n﹣2)•180°.12、C【分析】根据三角形的三边关系:在一个三角形中,两边之和大于第三边,两边之差小于第三边进行判断即可得解.【详解】A.,不满足三边关系,A选项错误;B.,不满足三边关系,B选项错误;C.满足三边关系,C选项正确;D.,不满足三边关系,D选项错误,故选:C.【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形三边关系的知识是解决本题的关键.二、填空题(每题4分,共24分)13、【解析】逆向运用同底数幂除法法则进行计算.【详解】∵am=2,an=3,∴am-n=.故答案是:.【点睛】考查了运用同底数幂除法法则进行计算,解题关键是逆向运用同底数幂除法法则.14、【分析】设每块墙砖的长为xcm,宽为ycm,根据题意,有“三块横放的墙砖比一块竖放的墙砖高5cm,两块横放的墙砖比两块竖放的墙砖低18cm”列方程组求解可得.【详解】解:设每块墙砖的长为xcm,宽为ycm,根据题意得:,解得:,∴每块墙砖的截面面积是:;故答案为:112.【点睛】本题主要考查二元一次方程组的应用,理解题意找到题目蕴含的相等关系列方程组是解题的关键.15、八(或8)【解析】分析:根据正多边形的每一个内角为,求出正多边形的每一个外角,根据多边形的外角和,即可求出正多边形的边数.详解:根据正多边形的每一个内角为,正多边形的每一个外角为:多边形的边数为:故答案为八.点睛:考查多边形的外角和,掌握多边形的外角和是解题的关键.16、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:数据0.00000451用科学记数法表示为4.51×10-1.故答案为:.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.17、【分析】在BC下方取一点D,使得三角形ACD为等边三角形,连接DP、BD.根据等腰三角形的性质和三角形的内角和定理证明△BDC≌△BPC和,从而可证明△BPD为等边三角形,根据等边三角形的性质可得∠BPD=60°,BP=DP,证明△ABP≌△ADP,从而可得.【详解】解:如下图在BC下方取一点D,使得三角形ACD为等边三角形,连接DP、BD.∴AD=AB=AC,∠ADC=∠CAD=60°,∵∠BAC=80°,AB=AC,∴∠DAB=∠BAC-∠CAD=20°,∠ABC=∠ACB=50°,∴∠ABD=∠ADB=80°,∴∠BDC=∠ADB+∠ADC=140°,∠DBC=∠ABD-∠ABC=30°,∵,,∴,,∴,又∵BC=BC∴△BDC≌△BPC,∴BD=BP,∵,∴△BPD为等边三角形,∴∠BPD=60°,BP=DP,在△ABP和△ADP中,∵∴△ABP≌△ADP,∴.故答案为:150°.【点睛】本题主要考查对等腰三角形的性质,等边三角形的性质和判定,全等三角形的性质和判定,三角形内角和定理.作辅助线得到全等三角形是解此题的关键,此题在证明三角形全等时用到了角度之间的计算,有一定的难度.18、9【分析】利用三角形的内角和求出∠A,余角的定义求出∠ACD,然后利用含30度角的直角三角形性质求出AC=2AD,AB=2AC即可..【详解】解:∵CD⊥AB,∠ACB=90°,∴∠ADC=∠ACB=90°又∵在三角形ABC中,∠B=30°∴∠A=90°-∠B=60°,AB=2AC又∵∠ADC=90°∴∠ACD=90°-∠A=30°∴AD=AC,即AC=6∴AB=2AC=12∴BD=AB-AD=12-3=9【点睛】本题主要考查了含30度角的直角三角形性质以及三角形内角和定理,解题的关键在于灵活应用含30度角的直角三角形性质.三、解答题(共78分)19、(1)作图见解析,A1(-1,1)、B1(-4,2)、C1(-3,4);(2);(3).【分析】(1)分别作出点A,B,C关于x轴的对称点,再首尾顺次连接即可得;(2)作出点A的对称点,连接A'B,则A'B与x轴的交点即是点P的位置,则PA+PB的最小值=A′B,根据勾股定理即可得到结论;(3)根据三角形的面积公式即可得到结论.【详解】(1)如图所示,△A1B1C1即为所求,由图知,A1的坐标为(-1,1)、B1的坐标为(-4,2)、C1的坐标为(-3,4);(2)如图所示:作出点A的对称点,连接A'B,则A'B与x轴的交点即是点P的位置,则PA+PB的最小值=A′B,∵A′B=,∴PA+PB的最小值为;(3)△ABC的面积=.【点睛】本题主要考查作图-轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质及利用轴对称性质求最短路径.20、见解析【分析】首先连结BD,过点B作DE边上的高BF,则BF=b-a,用两种方法表示出,两者相等,整理即可得证.【详解】证明:如图,连接BD,过点B作DE边上的高BF,可得BF=b-a∵,【点睛】本题考查了勾股定理的证明,用两种方法表示出是解题的关键.21、(1)当时,PQ∥AB,当时,;(2)OP=OQ,理由见解析【分析】(1)当PQ∥AB时,△PQC为等边三角形,根据PC=CQ列出方程即可解出x的值,当PQ⊥AC时,可得,列出方程解答即可;(2)作QH⊥AD于点H,计算得出QH=DP,从而证明△OQH≌△OPD(AAS)即可.【详解】解:(1)∵当PQ∥AB时,∴∠QPC=∠B=60°,又∵∠C=60°∴△PQC为等边三角形∴PC=CQ,∵PC=4-x,CQ=2x,由4-x=2x解得:,∴当时,PQ∥AB;若PQ⊥AC,∵∠C=60°,∴∠QPC=30°,∴,即,解得:∴当时,(2)OP=OQ,理由如下:作QH⊥AD于点H,∵AD⊥BC,∠QAH=30°,∴,∵DP=BP-BD=x-2,∴DP=QH,∴在△OQH与△OPD中∴△OQH≌△OPD(AAS)∴OQ=OP【点睛】本题考查了等边三角形的性质,含30°直角三角形的性质,全等三角形的性质及判定,几何中的动点问题,解题的关键是灵活运用等边三角形及全等三角形的性质及判定.22、(1)DE=BD+CE,证明见解析;(2)CE=BD+DE,证明见解析【分析】(1)根据等边三角形的性质可得AB=CA,∠BAC=60°,然后根据已知条件可得,并且可证出∠ABD=∠CAE,利用AAS即可证出△ABD≌△CAE,从而得出BD=AE,AD=CE,然后根据DE=AE+AD和等量代换即可得出结论;(2)根据等边三角形的性质可得AB=CA,∠BAC=60°,然后根据已知条件可得,并且可证出∠ABD=∠CAE,利用AAS即可证出△ABD≌△CAE,从而得出BD=AE,AD=CE,然后根据AD=AE+DE和等量代换即可得出结论;【详解】解:(1)DE=BD+CE,证明如下∵△ABC为等边三角形∴AB=CA,∠BAC=60°∵,∴∴∠ABD+∠BAD=180°-∠ADB=120°∠CAE+∠BAD=180°-∠BAC=120°∴∠ABD=∠CAE在△ABD和△CAE中∴△ABD≌△CAE∴BD=AE,AD=CE∴DE=AE+AD=BD+CE;(2)CE=BD+DE,证明如下∵△ABC为等边三角形∴AB=CA,∠BAC=60°∵,∴∴∠ABD+∠BAD=180°-∠ADB=60°∠CAE+∠BAD=∠BAC=60°∴∠ABD=∠CAE在△ABD和△CAE中∴△ABD≌△CAE∴BD=AE,AD=CE∵AD=AE+DE∴CE=BD+DE.【点睛】此题考查的是等边三角形的性质和全等三角形的判定及性质,掌握等边三角形的性质、利用AAS判定两个三角形全等和全等三角形的对应边相等是解决此题的关键.23、(1)见解析;(2)见解析【分析】(1)由勾股逆定理,然后画出两直角边分别为6和1的直角三角形即.(2)作出边长为的正方形即可.【详解】解:(1)如图,线段MN即为所求.(2)如图,正方形ABCD即为所求.【点睛】本题考查了勾股定理、正方形的判定和性质等知识,解题的关键是利用数形结合的思想解决问题.24、(1)详见
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 双方自愿合作协议模板
- 公司的股权转让的协议书
- mpa案例分析报告
- 2024-2025学年北京市五年级语文上学期期末考试真题重组卷(统编版)-A4
- 2023-2024学年天津市环城四区高二(上)期末语文试卷
- 陕西省渭南市蒲城县2024-2025学年七年级上学期期中生物学试题(原卷版)-A4
- 《工业机器人现场编程》课件-任务2.1认识机器人上下料工作站工程现场
- 《犯罪构成》课件
- 养老院老人情感慰藉制度
- 课件电力工程质量监督检查大纲介绍
- PANTONE国际色卡CMYK色值对照表3
- 精神康复中的心理危机干预策略考核试卷
- 人教版五年级上册数学《解决问题(不规则图形的面积)》说课稿
- 国家开放大学本科《公共部门人力资源管理》期末纸质考试总题库2025版
- DL-T 1071-2023 电力大件运输规范
- 冲刺2022年中考英语必背高频词汇360°无死角精练-中考英语备考资料重点知识点归纳
- 性病艾滋病丙肝防治工作总结
- 代理记账公司保密协议
- 产能合作共建协议书
- 2024年教师招聘考试-中小学校长招聘笔试考试历年高频考点试题摘选含答案
- 2024年执业医师考试-中医师承及确有专长考核笔试考试历年高频考点试题摘选含答案
评论
0/150
提交评论