版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市海淀中学2025届数学八年级第一学期期末调研试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.利用形如这个分配性质,求的积的第一步骤是()A. B.C. D.2.下列各因式分解中,结论正确的是()A.B.C.D.3.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A. B. C. D.4.二次根式的值是()A.﹣3 B.3或﹣3 C.9 D.35.如图,在四边形中,添加下列一个条件后,仍然不能证明,那么这个条件是()A. B.平分 C. D.6.下面的图形中对称轴最多的是()A. B.C. D.7.二次根式中字母x的取值范围是()A.x>2 B.x≠2 C.x≥2 D.x≤28.小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公共汽车到了学校.如图是他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图.则下列说法中正确的是().①小明家和学校距离1200米;②小华乘坐公共汽车的速度是240米/分;③小华乘坐公共汽车后7:50与小明相遇;④小华的出发时间不变,当小华由乘公共汽车变为跑步,且跑步的速度是100米/分时,他们可以同时到达学校.A.①③④ B.①②③ C.①②④ D.①②③④9.在平面直角坐标系xOy中,线段AB的两个点坐标分别为A(﹣1,﹣1),B(1,2).平移线段AB,得到线段A′B′.已知点A′的坐标为(3,1),则点B′的坐标为()A.(4,4) B.(5,4) C.(6,4) D.(5,3)10.要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的矩形ABCD,设BC的边长为x米,AB边的长为y米,则y与x之间的函数关系式是()A.y=-2x+24(0<x<12) B.y=-x+12(0<x<24)C.y=-2x-24(0<x<12) D.y=-x-12(0<x<24)二、填空题(每小题3分,共24分)11.如图,某小区有一块长方形的花圃,有人为了避开拐角走捷径,在花圃内走出了一条路AB,已知AC=3m,BC=4m,他们仅仅少走了__________步(假设两步为1米),却伤害了花草.12.已知函数y=x+m-2019(m是常数)是正比例函数,则m=____________13.函数中,自变量x的取值范围是.14.已知关于x的不等式组只有四个整数解,则实数a的取值范是______.15.已知有理数,我们把称为的差倒数,如2的差倒数为,-1的差倒数,已知,是的差倒数,是的差倒数,是的差倒数…,依此类推,则______.16.如图,在中,,,以为圆心,任意长为半径画弧分别交、于点和,再分别以、为圆心,大于的长为半径画弧,两弧交于点,连结并延长交于点,则下列说法①是的平分线;②;③点在的中垂线上;正确的个数是______个.17.若a=2019,b=2020,则[a2(a﹣2b)﹣a(a﹣b)2]÷b2的值为_____.18.如图,在△ABC中,∠A=40°,点D为AB的延长线上一点,且∠CBD=120°,则∠C=_____.三、解答题(共66分)19.(10分)先化简代数式,再从中选一个恰当的整数作为的值代入求值.20.(6分)王华由,,,,,这些算式发现:任意两个奇数的平方差都是8的倍数(1)请你再写出两个(不同于上面算式)具有上述规律的算式;(2)请你用含字母的代数式概括王华发现的这个规律(提示:可以使用多个字母);(3)证明这个规律的正确性.21.(6分)制文中学2019年秋季在政大商场购进了、两种品牌的冰鞋,购买品牌冰鞋花费了元,购买品牌冰鞋花费了元,且购买品牌冰鞋的数量是购买品牌冰鞋数量的倍,已知购买一双品牌冰鞋比购买一双品牌冰鞋多花元.(1)求购买一双品牌,一双品牌的冰鞋各需多少元?(2)为开展好“冰雪进校园”活动,制文中学决定再次购买两种品牌冰鞋共双,如果这所中学这次购买、两种品牌冰鞋的总费用不超过元,那么制文中学最多购买多少双品牌冰鞋?22.(8分)已知△ABC,顶点A、B、C都在正方形方格交点上,正方形方格的边长为1.(1)写出A、B、C的坐标;(2)请在平面直角坐标系中画出△ABC关于x轴对称的△A1B1C1;(3)在y轴上找到一点D,使得CD+BD的值最小,(在图中标出D点位置即可,保留作图痕迹)23.(8分)在平面直角坐标系中在图中描出,,,连接AB、BC、AC,得到,并将向右平移5个单位,再向上平移2个单位的得到;作出,使它与关于x轴对称.24.(8分)按要求完成下列各题(1)计算:(2)因式分解:(3)解方程:(4)先化简,再求值:,其中.25.(10分)某广告公司为了招聘一名创意策划,准备从专业技能和创新能力两方面进行考核,成绩高者录取.甲、乙、丙三名应聘者的考核成绩以百分制统计如下表.百分制候选人专业技能考核成绩创新能力考核成绩甲9088乙8095丙8590(1)如果公司认为专业技能和创新能力同等重要,则应聘人______将被录取.(2)如果公司认为职员的创新能力比专业技能重要,因此分别赋予它们6和4的权.计算他们赋权后各自的平均成绩,并说明谁将被录取.26.(10分)某甜品店用,两种原料制作成甲、乙两款甜品进行销售,制作每份甜品的原料所需用量如下表所示.该店制作甲款甜品份,乙款甜品份,共用去原料2000克.原料款式原料(克)原料(克)甲款甜品3015乙款甜品1020(1)求关于的函数表达式;(2)已知每份甲甜品的利润为5元,每份乙甜品的利润为2元.假设两款甜品均能全部卖出.若获得总利润不少于360元,则至少要用去原料多少克?
参考答案一、选择题(每小题3分,共30分)1、A【分析】把3x+2看成一整体,再根据乘法分配律计算即可.【详解】解:的积的第一步骤是.故选:A.【点睛】本题主要考查了多项式乘多项式的运算,把3x+2看成整体是关键,注意根据题意不要把x-5看成整体.2、D【分析】根据因式分解的定义逐项判断即可.【详解】解:A.,变形错误,不是因式分解,不合题意;B.,变形错误,不是因式分解,不合题意;C.,变形错误,不是因式分解,不合题意;D.,变形正确,是因式分解,符合题意.故选:D【点睛】本题考查了因式分解的定义,“将一个多项式变形为几个整式的积的形式叫因式分解”,注意因式分解是一种变形,故等号左右两边要相等.3、C【解析】题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.解:根据题意,得.故选C.4、D【分析】本题考查二次根式的化简,.【详解】.故选D.【点睛】本题考查了根据二次根式的意义化简.二次根式化简规律:当a≥0时,=a;当a≤0时,=﹣a.5、D【分析】根据全等三角形的判定定理:SSS、SAS、AAS、ASA、Hl逐一判定即可.【详解】A选项,,,AC=AC,根据SSS可判定;B选项,平分,即∠DAC=∠BAC,根据SAS可判定;C选项,,根据Hl可判定;D选项,,不能判定;故选:D.【点睛】此题主要考查全等三角形的判定,熟练掌握,即可解题.6、B【分析】分别得出各选项对称轴的条数,进而得出答案.【详解】A、有1条对称轴;
B、有4条对称轴;
C、有1条对称轴;
D、有2条对称轴;
综上可得:对称轴最多的是选项B.
故选:B.【点睛】本题主要考查了轴对称变换,正确得出每个图形的对称轴是解题关键.7、C【分析】根据被开方数大于等于0列不等式求解即可.【详解】由题意得,x﹣1≥0,解得x≥1.故选:C.【分析】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.8、D【解析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,本题得以解决.【详解】解:由图象可得,小明家和学校距离为1200米,故①正确,小华乘坐公共汽车的速度是1200÷(13﹣8)=240米/分,故②正确,480÷240=2(分),8+2=10(分),则小华乘坐公共汽车后7:50与小明相遇,故③正确,小华的出发时间不变,当小华由乘公共汽车变为跑步,且跑步的速度是100米/分时,小华从家到学校的所用时间为:1200÷100=12(分),则小华到校时间为8:00,小明到校时间为8:00,故④正确,故选:D.【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.9、B【分析】由题意可得线段AB平移的方式,然后根据平移的性质解答即可.【详解】解:∵A(﹣1,﹣1)平移后得到点A′的坐标为(3,1),∴线段AB先向右平移4个单位,再向上平移2个单位,∴B(1,2)平移后的对应点B′的坐标为(1+4,2+2),即(5,4).故选:B.【点睛】本题考查了平移变换的性质,一般来说,坐标系中点的平移遵循:上加下减,左减右加的规律,熟练掌握求解的方法是解题关键.10、B【分析】根据题意可得2y+x=24,继而可得出y与x之间的函数关系式,及自变量x的范围.【详解】解:由题意得:2y+x=24,
故可得:y=x+12(0<x<24).
故选:B.【点睛】此题考查了根据实际问题列一次函数关系式的知识,属于基础题,解答本题关键是根据三边总长应恰好为24米,列出等式.二、填空题(每小题3分,共24分)11、1【分析】根据勾股定理求得AB的长,再进一步求得少走的步数即可.【详解】解:在Rt△ABC中,AB2=BC2+AC2,则AB=m,∴少走了2×(3+1−5)=1步,故答案为:1.【点睛】此题考查了勾股定理的应用,求出AB的长是解题关键.12、1【分析】根据正比例函数的定义,m-1=0,从而求解.【详解】解:根据题意得:m-1=0,解得:m=1,故答案为1.【点睛】本题主要考查了正比例函数的定义,形如y=kx(k是常数,k≠0)的函数,其中k叫做比例系数.正比例函数一定是一次函数,但一次函数不一定是正比例函数.13、且.【解析】试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须且.考点:1.函数自变量的取值范围;2.二次根式和分式有意义的条件.14、-3<a≤-2【解析】分析:求出不等式组中两不等式的解集,根据不等式取解集的方法:同大取大;同小取小;大大小小无解;大小小大取中间的法则表示出不等式组的解集,由不等式组只有四个整数解,根据解集取出四个整数解,即可得出a的范围.详解:由不等式①解得:由不等式②移项合并得:−2x>−4,解得:x<2,∴原不等式组的解集为由不等式组只有四个整数解,即为1,0,−1,−2,可得出实数a的范围为故答案为点睛:考查一元一次不等式组的整数解,求不等式的解集,根据不等式组有4个整数解觉得实数的取值范围.15、【分析】根据差倒数的定义分别求出前几个数便不难发现,每3个数为一个循环组依次循环,用2020除以3,根据余数的情况确定出与相同的数即可得解.【详解】解:∵,
∴,,,……
∴这个数列以,,2依次循环,且,
∵,
∴,
故答案为:.【点睛】本题是对数字变化规律的考查,理解差倒数的定义并求出每3个数为一个循环组依次循环是解题的关键.16、1【分析】根据角平分线的做法可得①正确,再根据三角形内角和定理和外角与内角的关系可得∠ADC=60°,再根据线段垂直平分线的性质逆定理可得③正确.【详解】解:①根据角平分线的做法可得AD是∠BAC的平分线,说法①正确;
②∵∠C=90°,∠B=10°,
∴∠CAB=60°,
∵AD平分∠CAB,
∴∠DAB=10°,
∴∠ADC=10°+10°=60°,
因此∠ADC=60°正确;
③∵∠DAB=10°,∠B=10°,
∴AD=BD,
∴点D在AB的中垂线上,故③说法正确,
故答案为:1.【点睛】此题主要考查了角平分线的做法以及垂直平分线的判定,熟练根据角平分线的性质得出∠ADC度数是解题关键.17、﹣1.【分析】原式中括号中利用完全平方公式,单项式乘以多项式法则计算,合并后利用多项式除以单项式法则计算得到最简结果,把a与b的值代入计算即可求出值.【详解】解:原式=(a3﹣2a2b﹣a3+2a2b﹣ab2)]÷b2=﹣a,当a=1时,原式=﹣1.故答案为:﹣1.【点睛】本题主要考查了整式乘法的运用,准确的展开并化成最简的式子,再把已知的数值代入求解,化简是关键一步.18、80°【分析】根据三角形的外角定理即可求解.【详解】由三角形的外角性质得,∠C=∠CBD﹣∠A=120°﹣40°=80°.故答案为80°【点睛】此题主要考查三角形的外角定理,解题的关键熟知三角形的外角性质.三、解答题(共66分)19、,当时,原式【分析】根据分式的运算法则即可化简,再代入使分式有意义的值即可求解.【详解】,当时,原式.【点睛】此题主要考查分式的化简求值,解题的关键是熟知分式的运算法则.20、(1),;(2);(3)见解析.【分析】(1)根据已知算式写出符合题意的答案;(2)利用平方差公式计算,即可得出答案;(3)先把代数式进行分解因式,然后对m、n的值进行讨论分析,即可得到结论成立.【详解】解:(1)根据题意,有:,;∴,;(2)根据题意,得:(m,n,a都是整数且互不相同);(3)证明:==;当m、n同是奇数或偶数时,(m-n)一定是偶数,∴4(m-n)一定是8的倍数;当m、n是一奇一偶时,(m+n+1)一定是偶数,∴4(m+n+1)一定是8的倍数;综上所述,任意两个奇数的平方差都是8的倍数.【点睛】本题考查了因式分解的应用及平方差公式的应用,解题的关键是熟练掌握因式分解的方法进行解题.注意:平方差公式是a2-b2=(a+b)(a-b).21、(1)购买一双A品牌、一双B品牌冰鞋各需200元、300元;(2)制文中学最多购买B品牌冰鞋31双【分析】(1)设购买一双A品牌冰鞋需x元,则购买一双B品牌冰鞋需要(x+100)元,根据题意列出方程即可解出.(2)设购买B品牌冰鞋a双,则购买A品牌冰鞋(50-a)双,根据题意列出不等式解出范围即可.【详解】解(1):设购买一双A品牌冰鞋需x元,则购买一双B品牌冰鞋需要(x+100)元,根据题意得,解得,x=200经检验x=200是原分式方程的解∴x+100=300答:购买一双A品牌、一双B品牌冰鞋各需200元、300元.(2)解:设购买B品牌冰鞋a双,则购买A品牌冰鞋(50-a)双根据题意得,300a+200(50-a)≤13100解得,a≤31∵a取整数∴a=31答:制文中学最多购买B品牌冰鞋31双.【点睛】本题考查分式方程的应用、不等式的应用,关键在于理解题意找到等量关系.22、(1)A(﹣4,1)B(﹣1,﹣1)C(﹣3,2);(2)见解析;(3)见解析【分析】(1)根据A,B,C的位置写出坐标即可.(2)根据关于x轴对称的点的坐标特征,分别作出A,B,C的对应点A1,B1,C1即可.(3)作点C关于y轴的对称点C′,连接BC′交y轴于D,点D即为所求.【详解】解:(1)由题意:A(﹣4,1)B(﹣1,﹣1)C(﹣3,2)(2)如图,分别确定A、B、C关于x轴对称的对应点A1、B1、C1的坐标A1(-4,-1),B1(-1,1),C1(-3,-2),依次连接,即为所求.(3)如图,作点C关于y轴的对称点C′,连接BC′交y轴于D,点D即为所求.【点睛】本题考查了平面直角坐标系中点的坐标的确定,关于x轴对称的点的坐标特征,最短路径问题,解决本题的关键是熟练掌握关于x轴对称的点的坐标特征。23、(1)见解析;(2)见解析.【解析】根据三个点的坐标描点、连线可得,再将三个顶点分别平移得到对应点,然后首尾顺次连接即可得;分别作出三个顶点关于x轴的对称点,然后首尾顺次连接即可得.【详解】解:如图所示,和即为所求.
如图所示,即为所求.【点睛】考查作图轴对称变换和平移变换,解题的关键是熟练掌握轴对称和平移变换的定义和性质,并据此得出变换后的对应点.24、(1);(2);(3)1.5;(4);.【分析】(1)先算乘方和乘法,最后合并同类项即可;(2)先提取公因式,然后再运用公式法分解因式即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护理记录与交接管理制度
- 《散步》知识讲义
- 人教版可能性课件
- 2024年浙江客运从业资格证下载什么软件练题
- 算法设计与分析 课件 5.8-动态规划应用-编辑距离问题
- 2024年山西客运资格证应用能力试题答案解析
- 2024年承德考客运从业资格证考试题目
- 2024年鞍山客运资格证题库及答案
- 2024年长沙客运证考试
- 2024年乌鲁木齐客运资格专业能力考试试题
- 如何搞定你的客户-
- 八年级物理上册说课稿:第二章2.1物质的三态 温度的测量
- 湖北省鄂东南省级示范高中教育教学改革联盟2023-2024学年高一上学期期中联考政治试题
- 全护筒跟进旋挖施工方案
- 海水淡化处理方案
- 福建省厦门市翔安区2023-2024学年九年级上学期期中英语试题
- 学生对学校满意度评价表
- 化工项目国民经济分析 化工项目技术经济
- 计算与人工智能概论智慧树知到课后章节答案2023年下湖南大学
- 小学一年级下册数学期末考试质量分析及试卷分析
- 原材料情况说明范本
评论
0/150
提交评论