吉林省四平市铁西区2025届数学八年级第一学期期末学业水平测试模拟试题含解析_第1页
吉林省四平市铁西区2025届数学八年级第一学期期末学业水平测试模拟试题含解析_第2页
吉林省四平市铁西区2025届数学八年级第一学期期末学业水平测试模拟试题含解析_第3页
吉林省四平市铁西区2025届数学八年级第一学期期末学业水平测试模拟试题含解析_第4页
吉林省四平市铁西区2025届数学八年级第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省四平市铁西区2025届数学八年级第一学期期末学业水平测试模拟试题测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.下列计算中正确的是()A.÷=3 B.+= C.=±3 D.2-=22.某次列车平均提速vkm/h,用相同的时间,列车提速前行驶50km,提速后比提速前多行驶skm.设提速前列车的平均速度为xkm/h,则列方程是()A. B.C. D.3.若分式等于零,则的值是()A. B. C. D.4.某文化用品商店分两批购进同一种学生用品,已知第二批购进的数量是第一批购进数量的3倍,两批购进的单价和所用的资金如下表:单价(元)所用资金(元)第一批2000第二批6300则求第一批购进的单价可列方程为()A. B.C. D.5.如图,已知D为△ABC边AB的中点,E在AC上,将△ABC沿着DE折叠,使A点落在BC上的F处.若∠B=65°,则∠BDF等于()A.65° B.50° C.60° D.1.5°6.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15° B.30° C.45° D.60°7.每天用微信计步是不少市民的习惯,小张老师记录了一周每天的步数并制作成折线统计图,则小张老师这一周一天的步数超过7000步的有()A.1天 B.2天 C.3天 D.4天8.在3.1415926、、、、π这五个数中,无理数有()A.0个 B.1个 C.2个 D.3个9.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是().A.5 B.6 C.12 D.1610.如图,下列条件中,不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCB C.BO=CO,∠A=∠D D.AB=DC,∠DBC=∠ACB二、填空题(每小题3分,共24分)11.4的平方根是.12.函数中,自变量的取值范围是__________.13.若,,,则的大小关系用“<”号排列为_________.14.肥皂泡的泡壁厚度大约是,用科学记数法表示为_______.15.现有一个长方形纸片,其中.如图所示,折叠纸片,使点落在边上的处,折痕为,当点在上移动时,折痕的端点、也随之移动.若限定、分别在、边上移动,则点在边上可移动的最大距离为_________.16.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的中位数是_____.17.方程组的解是____.18.当______时,分式的值为0.三、解答题(共66分)19.(10分)已知:直线,为图形内一点,连接,.(1)如图①,写出,,之间的等量关系,并证明你的结论;(2)如图②,请直接写出,,之间的关系式;(3)你还能就本题作出什么新的猜想?请画图并写出你的结论(不必证明).20.(6分)请按要求完成下面三道小题.(1)如图1,∠BAC关于某条直线对称吗?如果是,请画出对称轴尺规作图,保留作图痕迹;如果不是,请说明理由.(2)如图2,已知线段AB和点C(A与C是对称点).求作线段,使它与AB成轴对称,标明对称轴b,操作如下:①连接AC;②作线段AC的垂直平分线,即为对称轴b;③作点B关于直线b的对称点D;④连接CD即为所求.(3)如图3,任意位置的两条线段AB,CD,且AB=CD(A与C是对称点).你能通过对其中一条线段作有限次的轴对称使它们重合吗?如果能,请描述操作方法或画出对称轴(尺规作图,保留作图痕迹);如果不能,请说明理由.21.(6分)建立模型:如图1,已知△ABC,AC=BC,∠C=90°,顶点C在直线l上.实践操作:过点A作AD⊥l于点D,过点B作BE⊥l于点E,求证:△CAD≌△BCE.模型应用:(1)如图1,在直角坐标系中,直线l1:y=x+4与y轴交于点A,与x轴交于点B,将直线l1绕着点A顺时针旋转45°得到l1.求l1的函数表达式.(1)如图3,在直角坐标系中,点B(8,6),作BA⊥y轴于点A,作BC⊥x轴于点C,P是线段BC上的一个动点,点Q(a,1a﹣6)位于第一象限内.问点A、P、Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请求出此时a的值,若不能,请说明理由.22.(8分)今年,长沙开始推广垃圾分类,分类垃圾桶成为我们生活中的必备工具.某学校开学初购进型和型两种分类垃圾桶,购买型垃圾桶花费了2500元,购买型垃圾桶花费了2000元,且购买型垃圾桶数量是购买型垃圾桶数量的2倍,已知购买一个型垃圾桶比购买一个型垃圾桶多花30元.(1)求购买一个型垃圾桶、B型垃圾桶各需多少元?(2)由于实际需要,学校决定再次购买分类垃圾桶,已知此次购进型和型两种分类垃圾桶的数量一共为50个,恰逢市场对这两种垃圾桶的售价进行调整,型垃圾桶售价比第一次购买时提高了8%,型垃圾桶按第一次购买时售价的9折出售,如果此次购买型和型这两种垃圾桶的总费用不超过3240元,那么此次最多可购买多少个型垃圾桶?23.(8分)如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°.(1)判断∠D是否是直角,并说明理由.(2)求四边形ABCD的面积.24.(8分)解不等式组,并把解集在数轴上表示出来.25.(10分)阅读下列解方程组的部分过程,回答下列问题解方程组现有两位同学的解法如下:解法一;由①,得x=2y+5,③把③代入②,得1(2y+5)﹣2y=1.……解法二:①﹣②,得﹣2x=2.……(1)解法一使用的具体方法是________,解法二使用的具体方法是______,以上两种方法的共同点是________.(2)请你任选一种解法,把完整的解题过程写出来26.(10分)精准扶贫,助力苹果产业大发展.甲、乙两超市为响应党中央将消除贫困和实现共同富裕作为重要的奋斗目标,到种植苹果的贫困山区分别用元以相同的进价购进质量相同的苹果.甲超市的销售方案:将苹果按大小分类包装销售,其中大苹果千克,以进价的倍价格销售,剩下的小苹果以高于进价的销售.乙超市的销售方案:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利元(包含人工工资和运费).(1)苹果进价为每千克多少元?(2)乙超市获利多少元?并比较哪种销售方式更合算.

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据二次根式的除法法则对A进行判断;根据合并同类二次根式对B、D进行判断;二次根式的性质对C进行判断;【详解】解:A.÷=,所以A选项正确;B.与不是同类二次根式不能合并,所以B选项不正确;C.=3,故C选项不正确;D.2-=,所以D选项不正确;故选:A.【点睛】本题考查了二次根式的混合运算,熟练掌握法则是解题的关键.2、C【分析】设提速前列车的平均速度为xkm/h,则提速后速度为(x+v)km/h,根据题意可得等量关系:提速前行驶50km所用时间=提速后行驶(s+50)km所用时间,根据等量关系列出方程即可.【详解】解:设提速前列车的平均速度为xkm/h,则提速后速度为(x+v)km/h,由题意得:,故选:C.【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.3、C【分析】根据分式的值为零的条件可以求出的值,分式的值是1的条件是:分子为1,分母不为1.【详解】∵且,解得:,故选:C.【点睛】本题考查了分式的值为零的条件:分式的分子为1,分母不为1,则分式的值为1.4、B【分析】先根据“购进的数量=所用资金÷单价”得到第一批和第二批购进学生用品的数量,再根据“第二批购进的数量是第一批购进数量的3倍”即得答案.【详解】解:第一批购进的学生用品数量为,第二批购进的学生用品数量为,根据题意列方程得:.故选:B.【点睛】本题考查了分式方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.5、B【解析】试题分析:∵△DEF是△DEA沿直线DE翻折变换而来,∴AD=DF,∵D是AB边的中点,∴AD=BD,∴BD=DF,∴∠B=∠BFD,∵∠B=65°,∴∠BDF=180°﹣∠B﹣∠BFD=180°﹣65°﹣65°=50°.考点:翻折变换(折叠问题)6、A【分析】先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论.【详解】∵等边三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分线,∵点E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACE=∠ACB-∠ECB=15°,故选A.【点睛】此题主要考查了等边三角形的性质,垂直平分线的判定和性质,等腰三角形的性质,求出∠ECB是解本题的关键.7、B【分析】根据折线统计图进行统计即可.【详解】根据统计图可得:小张老师这一周一天的步数超过7000步的有:星期一,星期六,共2天.故选:B【点睛】本题考查的是折线统计图,能从统计图中正确的读出信息是关键.8、C【解析】无理数是指无限不循环小数,根据定义判断即可.【详解】解:在3.1415926、、、、π这五个数中,无理数有、π共2个.故选:C.【点睛】本题考查了对无理数的定义的应用,注意:无理数包括:①含π的,②开方开不尽的根式,③一些有规律的数.9、C【分析】设此三角形第三边长为x,根据三角形的三边关系求出x的取值范围,找到符合条件的x值即可.【详解】设此三角形第三边长为x,则10-4﹤x﹤10+4,即6﹤x﹤14,四个选项中只有12符合条件,故选:C.【点睛】本题考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边,熟练掌握三角形的三边关系是解答的关键.10、D【解析】试题分析:根据题意知,BC边为公共边.A.由“SSS”可以判定△ABC≌△DCB,故本选项错误;B.由“SAS”可以判定△ABC≌△DCB,故本选项错误;C.由BO=CO可以推知∠ACB=∠DBC,则由“AAS”可以判定△ABC≌△DCB,故本选项错误;D.由“SSA”不能判定△ABC≌△DCB,故本选项正确.故选D.考点:全等三角形的判定.二、填空题(每小题3分,共24分)11、±1.【解析】试题分析:∵,∴4的平方根是±1.故答案为±1.考点:平方根.12、x≥0且x≠1【分析】根据二次根式被开方数大于等于0,分式分母不等于0列式计算即可得解.【详解】解:由题意得,x≥0且x−1≠0,解得x≥0且x≠1.故答案为:x≥0且x≠1.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(1)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13、a<b<c【分析】利用平方法把三个数值平方后再比较大小即可.【详解】解:∵a2=2000+2,b2=2000+2,c2=4004=2000+2×1002,1003×997=1000000-9=999991,1001×999=1000000-1=999999,10022=1.

∴a<b<c.故答案为:a<b<c.【点睛】这里注意比较数的大小可以用平方法,两个正数,平方大的就大.此题也要求学生熟练运用完全平方公式和平方差公式.14、7×10-1.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0007=7×10-1.故答案为7×10-1.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.15、1【解析】根据翻折的性质,可得BA′与AP的关系,根据线段的和差,可得A′C,根据勾股定理,可得A′C,根据线段的和差,可得答案.【详解】①当P与B重合时,BA′=BA=6,CA′=BC−BA′=10−6=1,②当Q与D重合时,由勾股定理,得CA′==8,CA′最远是8,CA′最近是1,点A′在BC边上可移动的最大距离为8−1=1,故答案为1.【点睛】本题考查了翻折变换,利用了翻折的性质,勾股定理,分类讨论是解题关键.16、7.5【分析】根据中位数的定义先把数据从小到大的顺序排列,找出最中间的数即可得出答案.【详解】解:因图中是按从小到大的顺序排列的,最中间的环数是7环、8环,则中位数是=7.5(环).故答案为:7.5.【点睛】此题考查了中位数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.17、【分析】利用代入消元法将x=1代入到x+y=5中,解出y即可.【详解】解:,将x=1代入到x+y=5中,解得:y=4,∴方程的解为:,故答案为:.【点睛】此题考查用代入消元法解二元一次方程组.18、-3【分析】根据分式的值为零的条件可以求出的值.【详解】由分式的值为零的条件得,,

由,得,

∴或,

由,得.

综上,得.

故答案是:.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1.这两个条件缺一不可.三、解答题(共66分)19、(1),见解析;(2);(3),见解析【分析】(1)如图①,延长交于点,根据两直线平行,内错角相等可得,再根据三角形外角的性质即可得解;(2)如图②中,过P作PG∥AB,利用平行线的性质即可解决问题;(3)如图③,在利用外角的性质以及两直线平行,内错角相等的性质,即可得出.【详解】证明:(1)如图①,延长交于点.在中则有.(三角形一个外角等于和它不相邻的两个内角的和)又,(两直线平行,内错角相等)..(图①)(图②)(2)如图②中,过P作PG∥AB,∵AB//CD∴PG//CD∵AB//PG∴∠ABP+∠BPG=180°∵PG//CD∴∠GPD+∠PDC=180°∴∠ABP+∠BPG+∠GPD+∠PDC=360°∴故答案为:.(3)如图③.证明如下:(图③)在中则有.(三角形一个外角等于和它不相邻的两个内角的和)又,(两直线平行,内错角相等).【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作出辅助线是解题的关键.20、(1)∠BAC关于∠ABC的平分线所在直线a对称,见解析;(2)见解析;(3)其中一条线段作2次的轴对称即可使它们重合,见解析【分析】(1)作∠ABC的平分线所在直线a即可;(2)先连接AC;作线段AC的垂直平分线,即为对称轴b;作点B关于直线b的对称点D;连接CD即为所求.(3)先类比(2)的步骤画图,通过一次轴对称,把问题转化为(1)的情况,再做一次轴对称即可满足条件.【详解】解:(1)如图1,作∠ABC的平分线所在直线a.(答案不唯一)(2)如图2所示:①连接AC;②作线段AC的垂直平分线,即为对称轴b;③作点B关于直线b的对称点D;④连接CD即为所求.(3)如图3所示,连接BD;作线段BD的垂直平分线,即为对称轴c;作点C关于直线c的对称点E;连接BE;作∠ABE的角平分线所在直线d即为对称轴,故其中一条线段作2次的轴对称即可使它们重合.【点睛】本题主要考查了利用轴对称变换进行作图,几何图形都可看做是有点组成,在画一个图形的轴对称图形时,是先从确定一些特殊的对称点开始.21、实践操作:详见解析;模型应用:(1)y=x+2;(1)A、P、Q可以构成以点Q为直角顶点的等腰直角三角形,a的值为或2.【分析】操作:根据余角的性质,可得∠ACD=∠CBE,根据全等三角形的判定,可得答案;应用(1)根据自变量与函数值的对应关系,可得A、B点坐标,根据全等三角形的判定与性质,可得CD,BD的长,根据待定系数法,可得AC的解析式;(1)分两种情况讨论:①当Q在直线AP的下方时,②当Q在直线AP的上方时.根据全等三角形的性质,可得关于a的方程,根据解方程,可得答案.【详解】操作:如图1:∵∠ACD+∠BCE=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在△ACD和△CBE中,∵,∴△CAD≌△BCE(AAS);(1)∵直线yx+2与y轴交于点A,与x轴交于点B,∴A(0,2)、B(﹣3,0).如图1:过点B做BC⊥AB交直线l1于点C,过点C作CD⊥x轴.在△BDC和△AOB中,∵,∴△BDC≌△AOB(AAS),∴CD=BO=3,BD=AO=2.OD=OB+BD=3+2=7,∴C点坐标为(﹣7,3).设l1的解析式为y=kx+b,将A,C点坐标代入,得:,解得:,l1的函数表达式为yx+2;(1)由题意可知,点Q是直线y=1x﹣6上一点.分两种情况讨论:①当Q在直线AP的下方时,如图3,过点Q作EF⊥y轴,分别交y轴和直线BC于点E、F.在△AQE和△QPF中,∵,∴△AQE≌△QPF(AAS),AE=QF,即6﹣(1a﹣6)=8﹣a,解得:a=2.②当Q在直线AP的上方时,如图2,过点Q作EF⊥y轴,分别交y轴和直线BC于点E、F,AE=1a﹣11,FQ=8﹣a.在△AQE和△QPF中,∵,∴△AQE≌△QPF(AAS),AE=QF,即1a﹣11=8﹣a,解得:a.综上所述:A.P、Q可以构成以点Q为直角顶点的等腰直角三角形,a的值为或2.【点睛】本题考查了一次函数综合题,利用余角的性质得出∠ACD=∠CBE是解题的关键,又利用了全等三角形的判定;利用了全等三角形的性质得出CD,BD的长是解题的关键,又利用了待定系数法求函数解析式;利用全等三角形的性质得出关于a的方程是解题的关键,要分类讨论,以防遗漏.22、(1)购买一个型垃圾桶、型垃圾桶分别需要50元和80元;(2)此次最多可购买1个型垃圾桶.【分析】(1)设一个A型垃圾桶需x元,则一个B型垃圾桶需(x+1)元,根据购买A型垃圾桶数量是购买B品牌足球数量的2倍列出方程解答即可;

(2)设此次可购买a个B型垃圾桶,则购进A型垃圾桶(50-a)个,根据购买A、B两种垃圾桶的总费用不超过3240元,列出不等式解决问题.【详解】(1)设购买一个型垃圾桶需元,则购买一个型垃圾桶需元.由题意得:.解得:.经检验是原分式方程的解.∴.答:购买一个型垃圾桶、型垃圾桶分别需要50元和80元.(2)设此次购买个型垃圾桶,则购进型垃圾桶个,由题意得:.解得.∵是整数,∴最大为1.答:此次最多可购买1个型垃圾桶.【点睛】本题考查一元一次不等式与分式方程的应用,正确找出等量关系与不等关系是解决问题的关键.23、(1)∠D是直角.理由见解析;(2)2.【分析】(1)连接AC,先根据勾股定理求得AC的长,再根据勾股定理的逆定理,求得∠D=90°即可;

(2)根据△ACD和△ACB的面积之和等于四边形ABCD的面积,进行计算即可.【详解】(1)∠D是直角.理由如下:连接AC.∵AB=20,BC=15,∠B=90°,∴由勾股定理得AC2=202+152=1.又∵CD=7,AD=24,∴CD2+AD2=1,∴AC2=CD2+AD2,∴∠D=90°.(2)四边形ABCD的面积=AD•DC+AB•BC=×24×7+×20×15=2.【点睛】考查了勾股定理以及勾股定理的逆定理的综合运用,解决问题时需要区别勾股定理及其逆定理.通过作辅助线,将四边形问题转化为三角形问题是关键.24、-1≤x﹤,数轴表示见解析【分析】先分别解出每个不等式的解集,再把各个解集表示在数轴上,取公共部分即为不等式组的解集.【详解】解:对于不等式组由①得:x≥-1,由②得:x﹤,所以原不等式组的解是:-1≤x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论