2025届鹤壁市重点中学数学八年级第一学期期末预测试题含解析_第1页
2025届鹤壁市重点中学数学八年级第一学期期末预测试题含解析_第2页
2025届鹤壁市重点中学数学八年级第一学期期末预测试题含解析_第3页
2025届鹤壁市重点中学数学八年级第一学期期末预测试题含解析_第4页
2025届鹤壁市重点中学数学八年级第一学期期末预测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届鹤壁市重点中学数学八年级第一学期期末预测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.给出下列命题:(1)有一个角为的等腰三角形是等边三角形;(2)三个内角度数之比为的三角形是直角三角形;(3)有三条互不重合的直线,若,那么;(4)等腰三角形两条边的长度分别为和,则它的周长为或.其中真命题的个数为()A.个 B.个 C.个 D.个2.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A. B. C. D.3.下列约分正确的是()A. B. C. D.4.如图,一棵树在一次强台风中,从离地面5m处折断,倒下的部分与地面成30°角,这棵树在折断前的高度是()A.5m B.10m C.15m D.20m5.将两块完全相同的长方体木块先按图1的方式放置,再按图2的方式放置,测得的数据如图(单位:)所示.则桌子的高度图1图2A. B. C. D.6.上体育课时,小明5次投掷实心球的成绩如下表所示,则这组数据的众数与中位数分别是()12345成绩(m)8.28.08.27.57.8A.8.2,8.2 B.8.0,8.2 C.8.2,7.8 D.8.2,8.07.下列因式分解正确的是()A. B.C. D.8.如图,在中,,点在上,于点,的延长线交的延长线于点,则下列结论中错误的是()A. B. C. D.9.已知点P(4,a+1)与点Q(-5,7-a)的连线平行于x轴,则a的值是(

)A.2 B.3 C.4 D.510.三角形的三边长为,则这个三角形是()A.等边三角形 B.钝角三角形 C.直角三角形 D.锐角三角形二、填空题(每小题3分,共24分)11.比较大小:__________1.(填>或<)12.已知,则___________.13.的倒数是__________.14.直线y=2x-6与y轴的交点坐标为________.15.若,则代数式的值为___________.16.如图,△ABC中,D为BC边上的一点,BD:DC=2:3,△ABC的面积为10,则△ABD的面积是_________________17.如图,点P在∠AOB的平分线上,若使△AOP≌△BOP,则需添加的一个条件是________(只写一个即可,不添加辅助线).18.若多项式是一个完全平方式,则m的值为______.三、解答题(共66分)19.(10分)如图,某斜拉桥的主梁AD垂直于桥面MN于点D,主梁上两根拉索AB、AC长分别为13米、20米.(1)若拉索AB⊥AC,求固定点B、C之间的距离;(2)若固定点B、C之间的距离为21米,求主梁AD的高度.20.(6分)如图,正方形网格中每个小正方形边长都是1,小正方形的顶点称为格点,在正方形网格中分别画出下列图形:(1)长为的线段PQ,其中P、Q都在格点上;(2)面积为13的正方形ABCD,其中A、B、C、D都在格点上.21.(6分)建立模型:如图1,等腰Rt△ABC中,∠ABC=90°,CB=BA,直线ED经过点B,过A作AD⊥ED于D,过C作CE⊥ED于E.则易证△ADB≌△BEC.这个模型我们称之为“一线三垂直”.它可以把倾斜的线段AB和直角∠ABC转化为横平竖直的线段和直角,所以在平面直角坐标系中被大量使用.模型应用:(1)如图2,点A(0,4),点B(3,0),△ABC是等腰直角三角形.①若∠ABC=90°,且点C在第一象限,求点C的坐标;②若AB为直角边,求点C的坐标;(2)如图3,长方形MFNO,O为坐标原点,F的坐标为(8,6),M、N分别在坐标轴上,P是线段NF上动点,设PN=n,已知点G在第一象限,且是直线y=2x一6上的一点,若△MPG是以G为直角顶点的等腰直角三角形,请直接写出点G的坐标.22.(8分)某中学八年级的同学参加义务劳动,其中有两个班的同学在两处参加劳动,另外两个班级在道路两处劳动(如图),现要在道路的交叉区域内设置一个茶水供应点P,使P到的距离相等,且使,请找出点P的位置(要求尺规作图,不写作法,保留痕迹)23.(8分)“推进全科阅读,培育时代新人”.某学校为了更好地开展学生读书节活动,随机调查了八年级名学生最近一周的读书时间,统计数据如下表:时间/小时人数(1)写出这名学生读书时间的众数、中位数、平均数;(2)根据上述表格补全下面的条形统计图,24.(8分)2019年是中国建国70周年,作为新时期的青少年,我们应该肩负起实现祖国伟大复兴的责任,为了培养学生的爱国主义情怀,我校学生和老师在5月下旬集体乘车去抗日战争纪念馆研学,已知学生的人数是老师人数的12倍多20人,学生和老师总人数有540人.(1)请求出去抗日战争纪念馆研学的学生和老师的人数各是多少?(2)如果学校准备租赁型车和型车共14辆(其中型车最多7辆),已知型车每年最车可以载35人,型车每车最多可以载45人,共有几种租车方案?(3)已知型车日租金为2000元,型车日租金为3000元,设租赁型大巴车辆,求出租赁总租金为元与的函数解析式,并求出最经济的租车方案.25.(10分)对下列代数式分解因式(1)n2(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.26.(10分)如图,在△ABC中,∠C=90°,AC=6,BC=8.(1)用直尺和圆规作∠A的平分线,交BC于点D;(要求:不写作法,保留作图痕迹)(2)求S△ADC:S△ADB的值.

参考答案一、选择题(每小题3分,共30分)1、B【分析】分别根据等边三角形的判定、直角三角形的判定、平行公理的推论、等腰三角形的性质逐一判定即可【详解】解:(1)有一个角为的等腰三角形是等边三角形;正确;

(2)三个内角度数之比为的三角形各个角的度数分别是30°、60°、90°,是直角三角形;正确;(3)有三条互不重合的直线,若,那么;正确;(4)等腰三角形两条边的长度分别为和,则它的三边长可能是2、2、4或2、4、4,其中2+24,不能构成三角形,所以等腰三角形的周长;错误.故选:B【点睛】熟练掌握等边三角形,直角三角形等的性质平行公理的推论、等腰三角形的性质以及三角形三边关系,熟练掌握相关的知识是解题的关键.2、C【详解】根据平角和直角定义,得方程x+y=90;根据∠3比∠3的度数大3°,得方程x=y+3.可列方程组为,故选C.考点:3.由实际问题抽象出二元一次方程组;3.余角和补角.3、C【分析】原式各项约分得到结果,即可做出判断.【详解】解:A、原式=x4,故选项错误;

B、原式=1,故选项错误;

C、原式=,故选项正确;

D、原式=,故选项错误.

故选:C.【点睛】本题考查了约分,约分的关键是找出分子分母的公因式.4、C【分析】根据30°所对的直角边是斜边的一半,得斜边是10,从而求出大树的高度.【详解】如图,在Rt△ABC中,∠BCA=90°,CB=5,∠BAC=30°,∴AB=10,∴大树的高度为10+5=15(m).故选C.【点睛】本题考查了直角三角形的性质:30°所对的直角边等于斜边的一半,掌握这条性质是解答本题的关键.5、C【分析】设小长方形的长为x,宽为y,根据题意可列出方程组,即可求解h.【详解】设小长方形的长为x,宽为y,由图可得解得h=40cm,故选C.【点睛】此题主要考查二元一次方程组的应用,解题的关键是根据图形列出方程组进行求解.6、D【详解】解:按从小到大的顺序排列小明5次投球的成绩:7.5,7.8,8.2,8.1,8.1.其中8.1出现1次,出现次数最多,8.2排在第三,∴这组数据的众数与中位数分别是:8.1,8.2.故选D.【点睛】本题考查众数;中位数.7、D【分析】分别把各选项分解因式得到结果,逐一判断即可.【详解】解:A.,故本选项不符合题意;B.,故本选项不符合题意;C.,故本选项不符合题意;D.,故本选项符合题意;故选:D【点睛】此题考查了因式分解-十字相乘法,以及提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.8、A【分析】由题意中点E的位置即可对A项进行判断;过点A作AG⊥BC于点G,如图,由等腰三角形的性质可得∠1=∠2=,易得ED∥AG,然后根据平行线的性质即可判断B项;根据平行线的性质和等腰三角形的判定即可判断C项;由直角三角形的性质并结合∠1=的结论即可判断D项,进而可得答案.【详解】解:A、由于点在上,点E不一定是AC中点,所以不一定相等,所以本选项结论错误,符合题意;B、过点A作AG⊥BC于点G,如图,∵AB=AC,∴∠1=∠2=,∵,∴ED∥AG,∴,所以本选项结论正确,不符合题意;C、∵ED∥AG,∴∠1=∠F,∠2=∠AEF,∵∠1=∠2,∴∠F=∠AEF,∴,所以本选项结论正确,不符合题意;D、∵AG⊥BC,∴∠1+∠B=90°,即,所以本选项结论正确,不符合题意.故选:A.【点睛】本题考查了等腰三角形的判定和性质、平行线的判定和性质以及直角三角形的性质等知识,属于基本题型,熟练掌握等腰三角形的判定和性质是解题的关键.9、B【分析】根据平行于x轴的直线上点的坐标特征得到a+1=7-a,然后解一元一次方程即可.【详解】解:∵PQ∥x轴,

∴点P和点Q的纵坐标相同,

即a+1=7-a,

∴a=1.

故选:B.【点睛】本题考查了坐标与图形性质:利用点的坐标计算相应线段的长和判断线段与坐标轴的位置关系.解决本题的关键是掌握平行于x轴的直线上点的坐标特征.10、C【分析】利用完全平方公式把等式变形为a2+b2=c2,根据勾股定理逆定理即可判断三角形为直角三角形,可得答案.【详解】∵,∴a2+2ab+b2=c2+2ab,∴a2+b2=c2,∴这个三角形是直角三角形,故选:C.【点睛】本题考查了勾股定理的逆定理,如果一个三角形的两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形,最长边所对的角为直角.二、填空题(每小题3分,共24分)11、>【分析】先确定的取值范围是,即可解答本题.【详解】解:,;故答案为:>.【点睛】本题考查的是实数的大小比较,确定无理数的取值范围是解决此题的关键.12、2【分析】先把变形为,再整体代入求解即可.【详解】∵,∴当时,原式.故答案为:2.【点睛】本题考查利用因式分解进行整式求值,解题的关键是利用完全平方公式进行因式分解.13、【分析】根据倒数的定义即可得出答案.【详解】的倒数是,故答案为.【点睛】本题考查的是倒数:乘积为1的两个数互为倒数.14、(0,-6)【分析】令x=0可求得相应y的值,则可求得答案.【详解】解:

在y=2x-6中,令x=0可得y=-6,

∴直线y=2x-6与y轴的交点坐标为(0,-6),

故答案为:(0,-6).【点睛】本题考查了一次函数图象上点的坐标特征,掌握函数图象与坐标轴交点的求法是解题的关键.15、1【分析】将因式分解,然后代入求值即可.【详解】解:==将代入,得原式=故答案为:1.【点睛】此题考查的是因式分解,掌握利用提取公因式法和完全平方公式因式分解是解决此题的关键.16、1【分析】利用面积公式可得出△ABD与△ABC等高,只需求出BD与BC的比值即可求出三角形ABD的面积.【详解】解:∵BD:DC=2:3,

∴BD=BC.

△ABD的面积=BD•h=×

BC•h=△ABC的面积=×10=1.故答案为:1.【点睛】本题考查了三角形面积公式以及根据公式计算三角形面积的能力.17、∠APO=∠BPO(答案不唯一)【解析】OA=OB结合已知条件可得△AOP=≌△BOP(ASA),当∠OAP=∠OBP或∠APO=∠BPO时,利用全等三角形的判定(AAS)可得△AOP≌△BOP.解:已知点P在∠AOB的平分线上∴∠AOP=∠BOP∵OP=OP,OA=OB∴△AOP=≌△BOP.故填OA=OB.18、±1【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.【详解】∵1x2+mx+1=(2x)2+mx+12,

∴mx=±2×2x×1,

解得m=±1.

故答案为:±1.【点睛】考查了完全平方式,解题的关键是熟记完全平方公式,并根据平方项确定出这两个数.三、解答题(共66分)19、(1)BC=米;(2)12米.【分析】(1)用勾股定理可求出BC的长;(2)设BD=x米,则BD=(21-x)米,分别在中和中表示出,于是可列方程,解方程求出x,然后可求AD的长.【详解】解:(1)∵AB⊥AC∴BC=(米);(2)设BD=x米,则BD=(21-x)米,在中,在中,,∴,∴x=5,∴(米).【点睛】本题考查了勾股定理的应用,根据勾股定理列出方程是解题关键.20、(1)见解析;(2)见解析.【分析】(1)由勾股定理可知当直角边为1和3时,则斜边为,由此可得线段PQ;(2)由勾股定理可知当直角边为2和3时,则斜边为,把斜边作为正方形的边长即可得到面积为13的正方形ABCD.【详解】(1)(2)如图所示:【点睛】本题考查了勾股定理的运用,本题需仔细分析题意,结合图形,利用勾股定理即可解决问题.21、(1)①(7,3);②(7,3)、(4,7)、(-4,1)、(-1,-3);(2)(4,2)、.【分析】(1)①过C作CD垂直于x轴构造“一线三垂直”,再根据全等三角形的性质求解即可;②点C有四处,分别作出图形,根据“一线三垂直”或对称求解即可;(2)当点G为直角顶点时,分点G在矩形MFNO的内部与外部两种情况构造“一线三垂直”求解即可.【详解】(1)①如图,过C作CD垂直于x轴,根据“一线三垂直”可得△AOB≌△BDC,∴AO=BD,OB=CD,∵点A(0,4),点B(3,0),∴AO=4,OB=3,∴OD=3+4=7,∴点C的坐标为(7,3);②如图,若AB为直角边,点C的位置可有4处,a、若点C在①的位置处,则点C的坐标为(7,3);b、若点C在的位置处,同理可得,则点的坐标为(4,7);c、若点C在的位置处,则、关于点A对称,∵点A(0,4),点(4,7),∴点的坐标为(-4,1);d、若点C在的位置处,则、C关于点B对称,∵点B(3,0),点C(7,3),∴点的坐标为(-1,-3);综上,点C的坐标为(7,3)、(4,7)、(-4,1)、(-1,-3);(2)当点G位于直线y=2x-6上时,分两种情况:①当点G在矩形MFNO的内部时,如图,过G作x轴的平行线AB,交y轴于A,交直线NF于点B,设G(x,2x-6);则OA=2x-6,AM=6-(2x-6)=12-2x,BG=AB-AG=8-x;则△MAG≌△GBP,得AM=BG,即:12-2x=8-x,解得x=4,∴G(4,2);当点G在矩形MFNO的外部时,如图,过G作x轴的平行线AB,交y轴于A,交直线NF的延长线于点B,设G(x,2x-6);则OA=2x-6,AM=(2x-6)-6=2x-12,BG=AB-AG=8-x;则△MAG≌△GBP,得AM=BG,即:2x-12=8-x,解得,∴G;综上,G点的坐标为(4,2)、.【点睛】本题考查的是一次函数综合题,涉及到点的坐标、矩形的性质、一次函数的应用、等腰直角三角形以及全等三角形等相关知识的综合应用,需要考虑的情况较多,难度较大.22、见解析【分析】根据可知,点P在DE的垂直平分线上,再根据P到的距离相等可知,点P在的角平分线上,所以DE的垂直平分线与的角平分线的交点即为所求的点P.【详解】如图【点睛】本题主要考查角平分线和垂直平分线性质的应用,掌握角平分线和垂直平分线的尺规作图是解题的关键.23、(1)众数是,中位数是,平均数是;(2)见解析【分析】(1)根据众数的定义、中位数的定义和平均数公式即可求出结论;(2)根据表格补全条形统计图即可.【详解】解:这名学生读书时间的众数是,中位数是(8+9)÷2=,平均数是(6×5+7×8+8×12+9×15+10×10)÷50=.补全的条形统计图如下:【点睛】此题考查的是求一组数据的中位数、众数、平均数和补全条形统计图,掌握众数的定义、中位数的定义和平均数公式是解决此题的关键.24、(1)去抗日战争纪念馆研学的学生有500人,老师有40人;(2)3;(3)租赁A型大巴车9辆和租赁B型大巴车5辆.【分析】(1)设去参观抗日战争纪念馆学生有x人,老师有y人,根据题意,得出关于x,y的二元一次方程组,解之即可得出结论;(2)设租赁B型大巴车m辆,则租赁A型大巴车(14-m)辆,由B型大巴车最多有1辆及租赁的14辆车至少能坐下540人,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,结合m为正整数即可得出m的值,从而得到租车方案;(3)设租赁总租金为w元,根据总租金=每辆车的租金金额×租车辆数,即可得出w关于m的函数关系式,再利用一次函数的性质即可找出最经济的租赁车辆方案.【详解】解:(1)设去去抗日战争纪念馆研学的学生有x人,老师有y人,依题意,得:,解得:.答:去抗日战争纪念馆研学的学生有500人,老师有40人.(2)设租赁B型大巴车m辆,则租赁A型大巴车(14-m)辆,依题意,得:,解得:5≤m≤1.∵m为正整数,∴m=5,6或1.∴租车方案有3种:①租A型车9辆,B型车5辆;②租A型车8辆,B型车6辆;③租A型车1辆,B型车1辆;(3)设租赁总租金为w元,依题意,得:w=3000m+2000(14-m)=1000m+28000,∵1000>0,∴w的值随m值的增大而增大,∴当m=5时,w取得最小值,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论