版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届甘肃省定西市数学八上期末质量跟踪监视模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2.分式有意义,x的取值范围是()A.x≠2 B.x≠﹣2 C.x=2 D.x=﹣23.已知一次函数的图象如图所示,则一次函数的图象大致是()A. B. C. D.4.下列给出的三条线段的长,能组成直角三角形的是()A. B. C. D.5.△ABC的三条边分别为a,b,c,下列条件不能判断△ABC是直角三角形的是()A.a2+b2=c2 B.a=5,b=12,c=13 C.∠A=∠B+∠C D.∠A:∠B:∠C=3:4:56.如图所示,三角形ABC的面积为1cm1.AP垂直∠B的平分线BP于P.则与三角形PBC的面积相等的长方形是()A.B.C.D.7.如图,中,垂直平分交于点,交于点.已知的周长为的周长为,则的长()A. B. C. D.8.的算术平方根是()A. B. C. D.9.下列二次根式中,是最简二次根式的是()A. B. C. D.10.如果把分式中的和都扩大了3倍,那么分式的值()A.扩大3倍 B.不变 C.缩小3倍 D.缩小6倍11.从边长为的正方形内去掉-一个边长为b的小正方形(如图1),然后将剩余部分剪拼成一个矩形(如图2),上述操作所能验证的等式是()A. B.C. D.12.如图,∠MAN=60°,若△ABC的顶点B在射线AM上,且AB=2,点C在射线AN上,当△ABC是直角三角形时,AC的值为()A.4 B.2 C.1 D.4或1二、填空题(每题4分,共24分)13.某商店卖水果,数量(千克)与售价(元)之间的关系如下表,(是的一次函数):/(千克)···/(元)···当千克时,售价_______________元14.长方形相邻边长分别为,,则它的周长是_______,面积是_______.15.若式子有意义,则x的取值范围是.16.观察下列图形的排列规律(其中△,○,☆,□分别表示三角形,圆,五角星,正方形):□○△☆□○△☆□○……,则第2019个图形是________.(填图形名称)17.如图,是等边三角形,点是的中点,点在的延长线上,点在上且满足,已知的周长为18,设,若关于的方程的解是正数,则的取值范围是______.18.在平面直角坐标系xOy中,已知点A(0,1),B(1,2),点P在x轴上运动,当点P到A、B两点距离之差的绝对值最大时,点P的坐标是_______.三、解答题(共78分)19.(8分)已知:如图,在平面直角坐标系中,已知,,.(1)在下图中作出关于轴对称的,并写出三个顶点的坐标;(2)的面积为(直接写出答案);(3)在轴上作出点,使最小(不写作法,保留作图痕迹).20.(8分)如图,△ABC和△ADE分别是以BC,DE为底边且顶角相等的等腰三角形,点D在线段BC上,AF平分DE交BC于点F,连接BE,EF.(1)CD与BE相等?若相等,请证明;若不相等,请说明理由;(1)若∠BAC=90°,求证:BF1+CD1=FD1.21.(8分)如图,在7×7网格中,每个小正方形的边长都为1.(1)建立适当的平面直角坐标系后,若点A(1,3)、C(2,1),则点B的坐标为______;(2)△ABC的面积为______;(3)判断△ABC的形状,并说明理由.22.(10分)问题背景若两个等腰三角形有公共底边,则称这两个等腰三角形的顶角的顶点关于这条底边互为顶针点;若再满足两个顶角的和是180°,则称这两个顶点关于这条底边互为勾股顶针点.如图1,四边形中,是一条对角线,,,则点与点关于互为顶针点;若再满足,则点与点关于互为勾股顶针点.初步思考(1)如图2,在中,,,、为外两点,,,为等边三角形.①点与点______关于互为顶针点;②点与点______关于互为勾股顶针点,并说明理由.实践操作(2)在长方形中,,.①如图3,点在边上,点在边上,请用圆规和无刻度的直尺作出点、,使得点与点关于互为勾股顶针点.(不写作法,保留作图痕迹)思维探究②如图4,点是直线上的动点,点是平面内一点,点与点关于互为勾股顶针点,直线与直线交于点.在点运动过程中,线段与线段的长度是否会相等?若相等,请直接写出的长;若不相等,请说明理由.23.(10分)如图,ΔABC中,A点坐标为(2,4),B点坐标为(-3,-2),C点坐标为(3,1).(1)在图中画出ΔABC关于y轴对称的ΔA′B′C′(不写画法),并写出点A′,B′,C′的坐标;(2)求ΔABC的面积.24.(10分)(1)计算:-|-3|+(-2018)0+(-2)2019×(2)计算:〔(2x-y)(2x+y)-(2x-3y)2〕÷(-2y).25.(12分)如图,点、、、在同一直线上,已知,,.求证:.26.解下列方程:;.
参考答案一、选择题(每题4分,共48分)1、D【分析】将一个图形沿着一条直线翻折后两侧能够完全重合,这样的图形是轴对称图形;将一个图形绕着一个点旋转180°后能与自身完全重合,这样的图形是中心对称图形,根据定义依次判断即可得到答案.【详解】A、是轴对称图形,不是中心对称图形;B、是轴对称图形,不是中心对称图形;C、不是轴对称图形,是中心对称图形;D、是轴对称图形,也是中心对称图形,故选:D.【点睛】此题考查轴对称图形的定义,中心对称图形的定义,熟记定义并掌握图形的特点是解题的关键.2、B【分析】分式中,分母不为零,所以x+2≠0,所以x≠-2【详解】解:因为有意义,所以x+2≠0,所以x≠-2,所以选B【点睛】本题主要考查分式有意义的条件3、C【分析】根据一次函数与系数的关系,由已知函数图象判断k、b,然后根据系数的正负判断函数y=-bx+k的图象位置.【详解】∵函数y=kx+b的图象经过第一、二、四象限,∴k<0,b>0,∴-b<0,∴函数y=-bx+k的图象经过第二、三、四象限.故选:C.【点睛】本题考查一次函数的图象与系数,明确一次函数图象与系数之间的关系是解题关键.4、D【分析】三角形三边满足两个较小边的平方和等于较大边的平方,这个三角形就是直角三角形.【详解】A、因为12+22≠32,所以三条线段不能组成直角三角形;B、因为22+32≠42,所以三条线段不能组成直角三角形;C、因为52+72≠92,所以三条线段不能组成直角三角形;D、因为32+42=52,所以三条线段能组成直角三角形.故选:D.【点睛】本题考查勾股定理的逆定理,关键知道两个较小边的平方和等于较大边的平方,这个三角形就是直角三角形.5、D【分析】根据勾股定理的逆定理及三角形内角和定理对各选项进行逐一判断即可.【详解】解:A、a2+b2=c2,是直角三角形,故本选项不符合题意;
B、∵52+122=132,
∴此三角形是直角三角形,故本选项不符合题意;
C、∵∠A+∠B+∠C=180°,∠A=∠B+∠C
∴∠A=90°,
∴此三角形是直角三角形,故本选项不符合题意;
D、设∠A=3x,则∠B=4x,∠C=5x,
∵∠A+∠B+∠C=180°,
∴3x+4x+5x=180°,解得x=15°
∴∠C=5×15°=75°,
∴此三角形不是直角三角形,故本选项符号要求;
故选D.【点睛】本题考查勾股定理及三角形内角和定理,熟知以上知识是解答此题的关键.6、B【分析】过P点作PE⊥BP,垂足为P,交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以证明两三角形面积相等,即可证明三角形PBC的面积.【详解】解:过P点作PE⊥BP,垂足为P,交BC于E,∵AP垂直∠B的平分线BP于P,∠ABP=∠EBP,又知BP=BP,∠APB=∠BPE=90°,∴△ABP≌△BEP,∴AP=PE,∵△APC和△CPE等底同高,∴S△APC=S△PCE,∴三角形PBC的面积=三角形ABC的面积=cm1,选项中只有B的长方形面积为cm1,故选B.7、A【分析】首先依据线段垂直平分线的性质得到AE=CE;接下来,依据AE=CE可将△ABE的周长为:14转化为AB+BC=14,求解即可.【详解】∵DE是AC的垂直平分线,∴AE=CE,∴△ABE的周长为:AB+BE+AE=AB+BE+CE=AB+BC∵的周长为的周长为∴AB+BC=14∴AC=24-14=10故选:A【点睛】本题主要考查的是线段垂直平分线的性质,掌握线段垂直平分线的性质是解题的关键.8、A【分析】根据算术平方根的定义即可得.【详解】由算术平方根的定义得:9的算术平方根是故选:A.【点睛】本题考查了算术平方根的定义,熟记定义是解题关键.9、C【分析】化简得到结果,即可做出判断.【详解】A.,故不是最简二次根式;B.,故不是最简二次根式;C.是最简二次根式;D.,故不是最简二次根式;故选C.【点睛】此题考查了最简二次根式,熟练掌握二次根式的化简公式是解本题的关键.10、C【分析】将分子与分母中未知数分别乘以3,进而化简即可.【详解】,故分式的值缩小3倍.故选:C.【点睛】本题考查了分式的性质,将未知数扩大3倍后再化简分式是解题关键.11、B【分析】分别求出从边长为a的正方形内去掉一个边长为b的小正方形后剩余部分的面积和拼成的矩形的面积,根据面积相等即可得出算式,即可选出选项.【详解】解:∵从边长为a的正方形内去掉一个边长为b的小正方形,剩余部分的面积是:,拼成的矩形的面积是:,∴根据剩余部分的面积相等得:,故选:B.12、D【分析】当点C在射线AN上运动,△ABC的形状由钝角三角形到直角三角形再到钝角三角形,画出相应的图形,根据运动三角形的变化,即可求出AC的值.【详解】解:如图,当△ABC是直角三角形时,有△ABC1,△ABC2两种情况,过点B作BC1⊥AN,垂足为C1,BC2⊥AM,交AN于点C2,在Rt△ABC1中,AB=2,∠A=60°,∴∠ABC1=30°,∴AC1=AB=1;在Rt△ABC2中,AB=2,∠A=60°,∴∠AC2B=30°,∴AC2=4,故选:D.【点睛】本题考查解直角三角形,构造直角三角形,掌握直角三角形中30°的角所对的直角边等于斜边的一半是解题关键.二、填空题(每题4分,共24分)13、【分析】根据表格可直接得到数量x(千克)与售价y(元)之间的关系式,然后把代入计算,即可得到答案.【详解】解:根据表格,设一次函数为:,则,解得:,∴;把代入,得:;∴当千克时,售价为22.5元.【点睛】本题考查了一次函数的性质,求一次函数的解析式,解题的关键是熟练掌握待定系数法求一次函数的解析式.14、1【分析】利用长方形的周长和面积计算公式列式计算即可.【详解】解:长方形的周长=2×(+)=2×(+2)=6,长方形的面积=×=1.
故答案为:6;1.【点睛】此题考查二次根式运算的实际应用,掌握长方形的周长和面积计算方法是解决问题的关键.15、且【详解】∵式子在实数范围内有意义,∴x+1≥0,且x≠0,解得:x≥-1且x≠0.故答案为x≥-1且x≠0.16、三角形【分析】根据图形的变化规律:每四个图形为一组,按照正方形、圆、三角形、五角星的顺序循环变化即可求解.【详解】观察图形的变化可知:每四个图形为一组,按照正方形、圆、三角形、五角星的顺序循环变化,2019÷4=504…3所以第2019个图形是三角形.故答案为:三角形.【点睛】本题考查了图形的变化类,解决本题的关键是观察图形的变化寻找规律.17、且.【分析】过P作PE∥BC交AC于点E,先证明是等边三角形,再证明和,然后转化边即得的值,进而求解含参分式方程的解,最后在解为正数和非增根的情况下求解参数,即得取值范围.【详解】解:过P作PE∥BC交AC于点E∴∵是等边三角形∴∠A=∠ABC=∠ACB=,∴,∴,∴是等边三角形∴,∴∴∵P点是AB的中点∴∴,∵∴∴∴在与中∴∴∴∴∵的周长为18,∴∴∵∴∴∵的解是正数∴∴且故答案为:且【点睛】本题考查等边三角形的性质和判定、全等三角形的判定和分式方程含参问题,利用等边三角形及边上中点作平行线构造全等三角形和等边三角形是解题关键,解决分式方程的含参问题关键是找清楚解所满足的条件,分式方程的解满足非增根这个隐含条件是易错点.18、(﹣1,0)【详解】解:由三角形两边之差小于第三边可知,当A、B、P三点不共线时,由三角形三边关系|PA﹣PB|<AB;当A、B、P三点共线时,∵A(0,1),B(1,2)两点都在x轴同侧,∴|PA﹣PB|=AB.∴|PA﹣PB|≤AB.∴本题中当点P到A、B两点距离之差的绝对值最大时,点P在直线AB上.设直线AB的解析式为y=kx+b,∵A(0,1),B(1,2),∴,解得.∴直线AB的解析式为y=x+1.令y=0,得0=x+1,解得x=﹣1.∴点P的坐标是(﹣1,0).故答案为:(﹣1,0).三、解答题(共78分)19、(1)见解析,A1(-1,2),B1(-3,1),C1(-4,3);(2);(3)见解析.【分析】(1)分别作出点A,B,C关于y轴对称的点,然后顺次连接即可;(2)用矩形面积减去三个小三角形面积,即可求得面积;(3)作点C关于x轴对称的点,连接交x轴于点即可.【详解】(1)关于y轴对称的如图所示:三个顶点的坐标分别是:;(2)△ABC的面积为;(3)如图所示:点P即为所求.∵点、关于轴对称,∴,∴,此时最短.【点睛】本题考查轴对称变换、三角形的面积、利用轴对称求最短路径等知识,解答本题的关键是根据网格结构作出对应点的位置.20、(1)CD=BE,理由见解析;(1)证明见解析.【分析】(1)由两个三角形为等腰三角形可得AB=AC,AE=AD,由∠BAC=∠EAD可得∠EAB=∠CAD,根据“SAS”可证得△EAB≌△CAD,即可得出结论;(1)根据(1)中结论和等腰直角三角形的性质得出∠EBF=90°,在Rt△EBF中由勾股定理得出BF1+BE1=EF1,然后证得EF=FD,BE=CD,等量代换即可得出结论.【详解】解:(1)CD=BE,理由如下:∵△ABC和△ADE为等腰三角形,∴AB=AC,AD=AE,∵∠EAD=∠BAC,∴∠EAD﹣∠BAD=∠BAC﹣∠BAD,即∠EAB=∠CAD,在△EAB与△CAD中,∴△EAB≌△CAD,∴BE=CD;(1)∵∠BAC=90°,∴△ABC和△ADE都是等腰直角三角形,∴∠ABF=∠C=45°,∵△EAB≌△CAD,∴∠EBA=∠C,∴∠EBA=45°,∴∠EBF=90°,在Rt△BFE中,BF1+BE1=EF1,∵AF平分DE,AE=AD,∴AF垂直平分DE,∴EF=FD,由(1)可知,BE=CD,∴BF1+CD1=FD1.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理等知识,结合题意寻找出三角形全等的条件是解决此题的关键.21、(1)(-2,-1);(2)5;(3)△ABC是直角三角形,∠ACB=90°.【解析】(1)首先根据A和C的坐标确定坐标轴的位置,然后确定B的坐标;(2)利用矩形的面积减去三个直角三角形的面积求解;(3)利用勾股定理的逆定理即可作出判断.【详解】解:(1)则B的坐标是(-2,-1).故答案是(-2,-1);(2)S△ABC=4×4-×4×2-×3×4-×1×2=5,故答案是:5;(3)∵AC2=22+12=5,BC2=22+42=20,AB2=42+32=25,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°.【点睛】本题考查了平面直角坐标系确定点的位置以及勾股定理的逆定理,正确确定坐标轴的位置是关键.22、(1)①、,②,理由见解析;(2)①作图见解析;②与可能相等,的长度分别为,,2或1.【分析】(1)根据互为顶点,互为勾股顶针点的定义即可判断.
(2)①以C为圆心,CB为半径画弧交AD于F,连接CF,作∠BCF的角平分线交AB于E,点E,点F即为所求.
②分四种情形:如图①中,当时;如图②中,当时;如图③中,当时,此时点F与D重合;如图④中,当时,点F与点D重合,分别求解即可解决问题.【详解】解:(1)根据互为顶点,互为勾股顶针点的定义可知:
①点A与点D和E关于BC互为顶针点;
②点D与点A关于BC互为勾股顶针点,理由:如图2中,∵△BDC是等边三角形,
∴∠D=60°,
∵AB=AC,∠ABC=30°,
∴∠ABC=∠ACB=30°,
∴∠BAC=120°,
∴∠A+∠D=10°,
∴点D与点A关于BC互为勾股顶针点,
故答案为:D和E,A.(2)①如图,点、即为所求(本质就是点关于的对称点为,相当于折叠).②与可能相等,情况如下:情况一:如图①,由上一问易知,,当时,设,连接,∵,∴,∴,在中,,,∴,解得,即;情况二:如图②当时,设,同法可得,则,,则,,在中,则有,解得:;情况三:如图③,当时,此时点与重合,可得;情况四
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 华师大版初中科学力
- 抢救与急救管理制度
- 人教部编版四年级语文上册口语交际《爱护眼睛保护视力》精美课件
- 【暑假阅读】小升初非连续性文本阅读衔接讲义 专题03 说明书类(有答案解析)
- 2024年昌吉考客运从业资格证考试题目
- 2024年拉萨小型客运从业资格证理论考试答案
- 2024年苏州道路客运输从业资格证考试真题保过
- 2024年呼和浩特客车从业资格证模拟考试答题软件
- 2024年吉林客运资格证场景模拟
- 2024年福建客运从业资格证实际操作试题及答案详解
- 中国农业文化遗产与生态智慧智慧树知到期末考试答案章节答案2024年浙江农林大学
- 2024年招录考试-大学毕业生士兵提干笔试参考题库含答案
- 实习生顶岗实习安全教育
- (正式版)QBT 5976-2024 制浆造纸行业绿色工厂评价要求
- 超声医学科-提高超声医学科危急值上报率PDCA
- 数字贸易学 课件 第12章 消费者行为与权益
- 计算机操作员(五级)理论考试题库(浓缩300题)
- 化验室岗位培训
- 人教版小学数学六年级上册《百分数》单元作业设计
- 2024-2029年中国自体富血小板血浆(PRP)行业市场现状分析及竞争格局与投资发展研究报告
- (2024年)学校传染病预防课件
评论
0/150
提交评论