版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
十堰市重点中学2025届数学八年级第一学期期末质量检测试题检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.小刚以400米/分的速度匀速骑车5分钟,在原地休息了6分钟,然后以500米/分的速度骑回出发地,下列函数图象(图中v表示骑车速度,s表示小刚距出发地的距离,t表示出发时间)能表达这一过程的是()A. B. C. D.2.以下列各组数据为边长,能构成三角形的是:A.4,4,8 B.2,4,7 C.4,8,8 D.2,2,73.化简-5a·(2a2-ab),结果正确的是()A.-10a3-5ab B.-10a3-5a2b C.-10a2+5a2b D.-10a3+5a2b4.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1、2、3 B.2、3、6 C.4、6、8 D.5、6、125.如图,根据计算长方形ABCD的面积,可以说明下列哪个等式成立()A. B.C. D.6.已知xm=6,xn=3,则x2m―n的值为(
)A.9 B. C.12 D.7.如图,在中,,点是边上的一点,点是的中点,若的垂直平分线经过点,,则()A.8 B.6 C.4 D.28.下列各式中的变形,错误的是(()A. B. C. D.9.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=42°,则∠P的度数为()A.44° B.66° C.96° D.92°10.一次函数上有两点和,则与的大小关系是()A. B. C. D.无法比较11.已知点和在一次函数的图象上,则与的大小关系是()A. B. C. D.12.将变形正确的是()A. B.C. D.二、填空题(每题4分,共24分)13.如图,在中,,平分,交于点,若,,则周长等于__________.14.已知函数y=3xn-1是正比例函数,则n的值为_____.15.如图,在平面直角坐标系中,点在直线上,过点作轴于点,作等腰直角三角形(与原点重合),再以为腰作等腰直角三角形,以为腰作等腰直角三角形;按照这样的规律进行下去,那么的坐标为______.的坐标为______.16.某个数的平方根分别是a+3和2a+15,则这个数为________.17.在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为_____.18.二次根式中,x的取值范围是.三、解答题(共78分)19.(8分)如图,在中,点分别在上,点在对角线上,且.求证:四边形是平行四边形.20.(8分)先化简,再求值:,其中x=1.21.(8分)端午节期间,甲、乙两人沿同一路线行驶,各自开车同时去离家千米的景区游玩,甲先以每小时千米的速度匀速行驶小时,再以每小时千米的速度匀速行驶,途中休息了一段时间后,仍按照每小时千米的速度匀速行驶,两人同时到达目的地,图中折线、线段分别表示甲、乙两人所走的路程、与时间之间的函数关系的图象请根据图象提供的信息,解决下列问题:(1)乙的速度为:_______;(2)图中点的坐标是________;(3)图中点的坐标是________;(4)题中_________;(5)甲在途中休息____________.22.(10分)某工厂要把一批产品从地运往地,若通过铁路运输,则每千米需交运费20元,还要交装卸费400元及手续费200元,若通过公路运输,则每千米需要交运费30元,还需交手续费100元(由于本厂职工装卸,不需交装卸费).设地到地的路程为,通过铁路运输和通过公路运输需交总运费元和元.(1)求和关于的函数表达式.(2)若地到地的路程为,哪种运输可以节省总运费?23.(10分)如图所示,已知点M(1,4),N(5,2),P(0,3),Q(3,0),过P,Q两点的直线的函数表达式为y=﹣x+3,动点P从现在的位置出发,沿y轴以每秒1个单位长度的速度向上移动,设移动时间为ts.(1)若直线PQ随点P向上平移,则:①当t=3时,求直线PQ的函数表达式.②当点M,N位于直线PQ的异侧时,确定t的取值范围.(2)当点P移动到某一位置时,△PMN的周长最小,试确定t的值.(3)若点P向上移动,点Q不动.若过点P,Q的直线经过点A(x0,y0),则x0,y0需满足什么条件?请直接写出结论.24.(10分)化简①②(+)()+225.(12分)如图,在△ABC中,AB=AC,点D是△ABC内一点,AD=BD,且AD⊥BD,连接CD.过点C作CE⊥BC交AD的延长线于点E,连接BE.过点D作DF⊥CD交BC于点F.(1)若BD=DE=,CE=,求BC的长;(2)若BD=DE,求证:BF=CF.26.(1)计算:;(2)解方程:.
参考答案一、选择题(每题4分,共48分)1、C【解析】根据小刚以400米/分的速度匀速骑车5分,可知路程随时间匀速增加;再根据原地休息,可知其路程不变;然后加速返回,其与出发点的距离随时间逐渐减少,据此分析可得到答案.【详解】解:由题意得,以400米/分的速度匀速骑车5分,路程随时间匀速增加;在原地休息了6分,路程不变;以500米/分的速度骑回出发地,与出发点的距离逐渐减少.故选C.【点睛】本题是一道有关函数的实际应用题,考查的是函数的表示方法-图象法.2、C【详解】解:∵4+4=8,故以4,4,8为边长,不能构成三角形;∵2+4<7,故以2,4,7为边长,不能构成三角形;∵4,8,8中,任意两边之和大于第三边,故以4,8,8为边长,能构成三角形;∵2+2<7,故以2,2,7为边长,不能构成三角形;故选C.【点睛】在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.3、D【解析】试题分析:根据单项式乘以多项式的计算法则进行计算,原式=,故选D.4、C【分析】根据三角形的两边之和大于第三边,两边之差小于第三边即可求解.【详解】解:选项A:1+2=3,两边之和等于第三边,故选项A错误;选项B:2+3=5<6,两边之和小于第三边,故选项B错误;选项C:符合三角形的两边之和大于第三边,两边之差小于第三边,故选项C正确;选项D:5+6=11<12,两边之和小于第三边,故选线D错误;故选:C.【点睛】本题考查三角形的三边之间的关系,属于基础题,熟练掌握三角形的三边之间的关系是解决本题的关键.5、D【详解】长方形ABCD的面积的两种表示方法可得,故选D.6、C【解析】试题解析:试题解析:∵xm=6,xn=3,∴x2m-n==36÷3=12.故选C.7、C【分析】根据线段垂直平分线的性质可得,再根据直角三角形斜边中线定理即可求得答案.【详解】解:∵的垂直平分线经过点,∴,∵,点是的中点,∴,故选:C.【点睛】本题考查了线段垂直平分线的性质,直角三角形斜边中线定理.8、D【分析】根据分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变,可得答案.【详解】A、,故A正确;B、分子、分母同时乘以﹣1,分式的值不发生变化,故B正确;C、分子、分母同时乘以3,分式的值不发生变化,故C正确;D、≠,故D错误;故选D.【点睛】本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变.9、C【分析】根据等腰三角形的性质得到∠A=∠B,证明△AMK≌△BKN,得到∠AMK=∠BKN,根据三角形的外角的性质求出∠A=∠MKN=42°,根据三角形内角和定理计算即可.【详解】解:∵PA=PB,∴∠A=∠B,在△AMK和△BKN中,,∴△AMK≌△BKN,∴∠AMK=∠BKN,∵∠MKB=∠MKN+∠NKB=∠A+∠AMK,∴∠A=∠MKN=42°,∴∠P=180°﹣∠A﹣∠B=96°,故选C.【点睛】此题主要考查利用等腰三角形的性质判定三角形全等,以及三角形的外教性质和内角和定理的运用,熟练掌握,即可解题.10、B【分析】由点两点(-1,y1)和(1,y1)的横坐标利用一次函数图象上点的坐标特征,可求出y1、y1的值,比较后即可得出结论.【详解】∵一次函数y=-1x+3上有两点(1,y1)和(-1019,y1),∴y1=-1×1+3=1,y1=-1×(-1019)+3=4041,∴y1<y1.故选:B.【点睛】本题考查了一次函数图象上点的坐标特征,利用一次函数图象上点的坐标特征,求出y1、y1的值是解题的关键.11、A【分析】根据一次函数y随x的增大而减小可作出判断.【详解】∵一次函数中,∴y随x的增大而减小,又∵和中,∴故选:A.【点睛】本题考查一次函数的增减性,熟练掌握时,y随x的增大而减小是解题的关键.12、C【分析】根据进行变形即可.【详解】解:即故选:C.【点睛】此题考查了完全平方公式,掌握是解题的关键,是一道基础题,比较简单.二、填空题(每题4分,共24分)13、6+6【分析】根据含有30°直角三角形性质求出AD,根据勾股定理求出AC,再求出AB和BD即可.【详解】因为在中,,所以所以AD=2CD=4所以AC=因为平分,所以=2所以所以BD=AD=4,AB=2AC=4所以周长=AC+BC+AB=++2+4==6+6故答案为:6+6【点睛】考核知识点:含有30°直角三角形性质,勾股定理;理解直角三角形相关性质是关键.14、1【分析】根据正比例函数:正比例函数y=kx的定义条件是:k为常数且k≠0,可得答案.【详解】解:∵函数y=3xn﹣1是正比例函数,∴n﹣1=1,则n=1.故答案是:1.【点睛】本题主要考查正比例函数的概念,掌握正比例函数的概念是解题的关键.15、【分析】根据直线的解析式及等腰直角三角形的性质分析前几个点的坐标规律,找到规律则可得出答案.【详解】∵点在x轴上,且∵∴的坐标为故答案为:;.【点睛】本题主要考查等腰直角三角形的性质,找到点的坐标规律是解题的关键.16、1【解析】∵某个数的平方根分别是a+3和2a+15,∴a+3+2a+15=0,∴a=-6,∴(a+3)2=(-6+3)2=1,故答案为:1.17、130°或90°.【解析】分析:根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC的度数.详解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为130°或90°.点睛:本题考查等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用等腰三角形的性质和分类讨论的数学思想解答.18、.【解析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.三、解答题(共78分)19、证明见解析.【分析】根据SAS可以证明△MAE≌△NCF.从而得到EM=FN,∠AEM=∠CFN.根据等角的补角相等,可以证明∠FEM=∠EFN,则EM∥FN.根据一组对边平行且相等的四边形是平行四边形即可证明.【详解】证明:∵四边形是平行四边形,∴,∵,∴,∴,∵,∴,在与中:∴,∴,∴,∴,∴,∴四边形是平行四边形.【点睛】此题综合运用了平行四边形的性质和判定.能够根据已知条件和平行四边形的性质发现全等三角形是解题的关键.20、;1【分析】先因式分解,再约分,化简,代入求值.【详解】解:原式===当x=1时,原式=【点睛】本题考查分式计算题,一般需要熟练掌握因式分解,通分,约分的技巧.(1)因式分解一般方法:提取公因式:;公式法:,(平方差公式);,(完全平方公式);十字相乘法:(x+a)(a+b)=.(1)分式的约分步骤:(1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去.(1)分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去.
注:公因式的提取方法:系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式.(3)通分:先求出所有分式分母的最简公分母,再将所有分式的分母变为最简公分母.同时各分式按照分母所扩大的倍数,相应扩大各自的分子.
注:最简公分母的确定方法:系数取各因式系数的最小公倍数,相同字母的最高次幂及单独字母的幂的乘积.(4)易错示例:1+;.21、(1)80千米/小时;(2)(1,60);(3)(2,160);(4);(5)1.【分析】(1)根据速度=路程时间即可得出乙的速度;(2)根据路程=速度时间,可得甲1小时所行驶的路程,即可得出A点坐标;(3)根据D的坐标可计算直线OD的解析式,从图中知E的横坐标为2,可得E的坐标;(4)根据2小时时甲追上乙,可知两人路程相等,列出方程,解方程即可;(5)根据点E到D的时间差及速度可得休息的时间.【详解】(1)乙的速度为:(千米/小时);故答案为:80千米/小时(2)∵甲先以每小时千米的速度匀速行驶小时到达A∴此时,甲走过的路程为60千米∴图中点的坐标是(1,60);故答案为:(1,60)(3)设直线OD的解析式为:,把代入得:,,∴直线OD的解析式为:,当时,,,故答案为:(4)由图像可知,两小时时,甲追上乙,由题意得:,∴,故答案为:1(5)∵,∴甲在途中休息1.故答案为:1【点睛】本题考查了一次函数的应用,读懂函数图象,理解横、纵坐标表示的含义,熟练掌握一次函数的相关知识、利用数形结合思想是解题的关键.22、(1),;(2)铁路运输节省总费用【分析】(1)可根据总运费=每千米的运费×路程+装卸费和手续费,来表示出y1、y2关于x的函数关系式;
(2)把路程为120km代入,分别计算y1和y2,比较其大小,然后可判断出哪种运输可以节省总运费.【详解】解:(1)(2)将代入得因为,所以铁路运输节省总费用.【点睛】本题考查了一次函数的应用,一次函数的应用题常出现于销售、收费、行程等实际问题当中,是常用的解答实际问题的数学模型,是中考的常见题型.23、(1)①y=﹣x+6,②2<t<4;(2);(1)x0<1时,y0>﹣x+1,当x0>1时,y0<﹣x0+1.【分析】(1)①设平移后的函数表达式为:y=﹣x+b,其中b=1+t,即可求解;②当直线PQ过点M时,将点M的坐标代入y=﹣x+1+t得:4=﹣1+1+t,解得:t=2;同理当直线PQ过点N时,t=4,即可求解;(2)作点N关于y轴的对称轴N′(﹣5,2),连接MN′交y轴于点P,则点P为所求点,即可求解;(1)由题意得:x0<1时,y0>﹣x+1,当x0>1时,y0<﹣x0+1.【详解】解:(1)①设平移后的函数表达式为:y=﹣x+b,其中b=1+t,故y=﹣x+1+t,当t=1时,PQ的表达式为:y=﹣x+6;②当直线PQ过点M时,将点M的坐标代入y=﹣x+1+t得:4=﹣1+1+t,解得:t=2;同理当直线PQ过点N时,t=4,故t的取值范围为:2<t<4;(2)作点N关于y轴的对称轴N′(﹣5,2),连接MN′交y轴于点P,则点P为所求点,则PN=PN′,△PMN的周长=MN+PM+PN=MN+PM+PN′=MN+MN′为最小,设直线MN′的表达式为:y=kx+b,则,解得:,故直线MN′的表达式为:y=x+,当x=0时,y=,故点P(0,),∴t=﹣1=;(1)点A(x0,y0),点Q(1,0),点P(0,t+1)由题意得:x0<1时,y0>﹣x+1,当x0>1时,y0<﹣x0+1.【点睛】本题考查的是一次函数综合运用,涉及到一次函数的性质、点的对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吉林艺术学院《西方视觉艺术发展史》2021-2022学年第一学期期末试卷
- 吉林艺术学院《理性色彩训练》2021-2022学年第一学期期末试卷
- 广东汽修厂合作协议书范本
- 吉林师范大学《重唱与表演唱》2021-2022学年第一学期期末试卷
- 2024年大学生团购协议书模板范本
- 吉林师范大学《现代电子信息技术选讲II》2021-2022学年期末试卷
- 万达商家入驻协议书范文
- 2022年山东省公务员录用考试《申论》真题(B类)及答案解析
- 农业合作社稽核管理制度创新
- 吉林师范大学《和声Ⅱ》2021-2022学年第一学期期末试卷
- 非小细胞肺癌NCCN指南解读
- 广东省2020年中考英语试题【含答案】
- EBO管理体系与案例分享
- 拦砂坝施工设计方案
- GB/T 20934-2016钢拉杆
- 教研课平行四边形和梯形的复习ppt
- S曲线和技术进化法则TRIZ专题培训课件
- 铜矿普查简报铜矿
- 消防设施定期检查、检测、维修保养记录
- 小学数学北师大四年级上册数学好玩 数图形的学问 省一等奖
- 运算放大器知识介绍课件
评论
0/150
提交评论