2025届湖北省浠水县联考八年级数学第一学期期末学业水平测试模拟试题含解析_第1页
2025届湖北省浠水县联考八年级数学第一学期期末学业水平测试模拟试题含解析_第2页
2025届湖北省浠水县联考八年级数学第一学期期末学业水平测试模拟试题含解析_第3页
2025届湖北省浠水县联考八年级数学第一学期期末学业水平测试模拟试题含解析_第4页
2025届湖北省浠水县联考八年级数学第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖北省浠水县联考八年级数学第一学期期末学业水平测试模拟试题试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.在下列长度的各组线段中,能组成直角三角形的是()A.5,6,7 B.5,12,13 C.1,4,9 D.5,11,122.二班学生某次测试成绩统计如下表:则得分的众数和中位数分别是()得分(分)60708090100人数(人)7121083A.70分,70分 B.80分,80分 C.70分,80分 D.80分,70分3.如图,将“笑脸”图标向右平移4个单位,再向下平移2个单位,点P的对应点P'的坐标是()A.(﹣1,2) B.(﹣9,6) C.(﹣1,6) D.(﹣9,2)4.中、、的对边分别是、、,下列命题为真命题的()A.如果,则是直角三角形B.如果,则是直角三角形C.如果,则是直角三角形D.如果,则是直角三角形5.若点在正比例函数的图象上,则下列各点不在正比例函数的图象上的是()A. B. C. D.6.平面直角坐标系中,点(﹣2,4)关于x轴的对称点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.如图,AD是△ABC的中线,点E、F分别是射线AD上的两点,且DE=DF,则下列结论不正确的是()A.△BDF≌△CDE B.△ABD和△ACD面积相等C.BF∥CE D.AE=BF8.如图,为线段上一动点(不与点,重合),在同侧分别作等边和等边,与交于点,与交于点,与交于点,连接.下列五个结论:①;②;③;④DE=DP;⑤.其中正确结论的个数是()A.2个 B.3个 C.4个 D.5个9.如图,AE∥CD,△ABC为等边三角形,若∠CBD=15°,则∠EAC的度数是()A.60° B.45° C.55° D.75°10.在Rt△ABC中,以两直角边为边长的正方形面积如图所示,则AB的长为()A.49 B. C.3 D.711.现用张铁皮做盒子,每张铁皮做个盒身或做个盒底,而一个盒身与两个盒底配成一个盒子,设用张铁皮做盒身,张铁皮做盒底,则可列方程组为()A. B.C. D.12.在ΔABC中,∠A,∠B,∠C的对边分别是a,b,c,下列条件中,不能判定ΔABC是直角三角形的是()A.∠A+∠B=90°C.a=1,b=3,c=10 D.二、填空题(每题4分,共24分)13.如图,长方形两边长,两顶点分别在轴的正半轴和轴的正半轴上运动,则顶点到原点的距离最大值是__________.14.等腰三角形有一个外角是100°,那么它的的顶角的度数为_____________.15.如图,在一根长90cm的灯管上,缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为__.16.如图,在中,,,分别是,的中点,在的延长线上,,,,则四边形的周长是____________.17.一次函数的图像沿轴向上平移3个单位长度,则平移后的图像所对应的函数表达为_____.18.多项式中各项的公因式是_________.三、解答题(共78分)19.(8分)中,,,,分别是边和上的动点,在图中画出值最小时的图形,并直接写出的最小值为.20.(8分)如图,傅家堰中学新修了一个运动场,运动场的两端为半圆形,中间区域为足球场,外面铺设有塑胶环形跑道,四条跑道的宽均为1米.(1)用含a、b的代数式表示塑胶环形跑道的总面积;(2)若a=60米,b=20米,每铺1平方米塑胶需120元,求四条跑道铺设塑胶共花费多少元?(π=3)21.(8分)已知:如图,∠ABC,射线BC上一点D,求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.(不写作法,保留作图痕迹)22.(10分)阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究一:如图1.在△ABC中,已知O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现.理由如下:∵BO和CO分别是∠ABC与∠ACB的平分线,∴,;∴,∴(1)探究二:如图2中,已知O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?并说明理由.(2)探究二:如图3中,已知O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?23.(10分)列方程(组)解应用题:为顺利通过国家义务教育均衡发展验收,我市某中学配备了两个多媒体教室,购买了笔记本电脑和台式电脑共120台,购买笔记本电脑用了7.2万元,购买台式电脑用了24万元,已知笔记本电脑单价是台式电脑单价的1.5倍,那么笔记本电脑和台式电脑的单价各是多少?24.(10分)某校组织全校2000名学生进行了环保知识竞赛,为了解成绩的分布情况,随机抽取了部分学生的成绩(得分取整数,满分为100分),并绘制了频数分布表和频数分布直方图(不完整):分组频数频率50.5~60.5200.0560.5~70.548△70.5~80.5△0.2080.5~90.51040.2690.5~100.5148△合计△1根据所给信息,回答下列问题:(1)补全频数分布表;(2)补全频数分布直方图;(3)学校将对成绩在90.5~100.5分之间的学生进行奖励,请你估算出全校获奖学生的人数.25.(12分)观察下列算式:①1×3-22=3-4=-1②2×4-32=8-9=-1③3×5-42=15-16=-1④......(1)请按以上规律写出第4个算式;(2)写出第n个算式;(3)你认为(2)中的式子一定成立吗?请证明.26.猜想与证明:小强想证明下面的问题:“有两个角(图中的和)相等的三角形是等腰三角形”.但他不小心将图弄脏了,只能看见图中的和边.(1)请问:他能够把图恢复成原来的样子吗?若能,请你帮他写出至少两种以上恢复的方法并在备用图上恢复原来的样子.(2)你能够证明这样的三角形是等腰三角形吗?(至少用两种方法证明)

参考答案一、选择题(每题4分,共48分)1、B【解析】试题分析:解:A、∵52+62≠72,故不能围成直角三角形,此选项错误;C、∵12+42≠92,故不能围成直角三角形,此选项错误;B、∵52+122=132,能围成直角三角形,此选项正确;D、∵52+112≠122,故不能围成直角三角形,此选项错误.故选B.考点:本题考查了勾股定理的逆定理点评:此类试题属于基础性试题,考生直接一招勾股定理把各项带入验证即可2、C【解析】根据一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,则中间的数(或中间两个数据的平均数)就是这组数据的中位数解答即可.【详解】解:由于总人数为7+12+10+8+3=40人,所以中位数为第20、21个数据平均数,即中位数为=80(分),因为70分出现次数最多,所以众数为70分,故选C.【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.3、A【分析】根据平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减即可解决问题;【详解】由题意P(﹣5,4),向右平移4个单位,再向下平移2个单位,点P的对应点P'的坐标是(﹣1,2),故选A.【点睛】本题考查坐标与平移,解题的关键是记住平移规律:坐标,右移加,左移减;纵坐标,上移加,属于中考常考题型.4、D【分析】根据三角形内角和可判断A和B,根据勾股定理逆定理可判断C和D.【详解】解:A、∵∠A=2∠B=3∠C,∴,,∵∠A+∠B+∠C=180°,∴,∴∠A≈98°,故不符合题意;B、如果∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠C==75°,故不符合题意;C、如果a:b:c=1:2:2,∵12+22≠22,∴不是直角三角形,故不符合题意;D、如果a:b;c=3:4:,∵,∴△ABC是直角三角形,符合题意;故选:D.【点睛】本题主要考查命题与定理,三角形的内角和以及勾股定理的逆定理,解题的关键是熟练掌握勾股定理的逆定理和直角三角形的判定.5、D【分析】先根据点A在正比例函数的图象上,求出正比例函数的解析式,再把各点代入函数解析式验证即可.【详解】解:∵点在正比例函数的图象上,,,故函数解析式为:;A、当时,,故此点在正比例函数图象上;B、当时,,故此点在正比例函数图象上;C、当时,,故此点在正比例函数图象上;D、当时,,故此点不在正比例函数图象上;故选:D.【点睛】本题考查的是正比例函数的图象上点的坐标,要明确图象上点的坐标一定适合此函数的解析式是解答此题的关键.6、C【解析】试题分析:利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y),进而得出答案.解:点(﹣2,4)关于x轴的对称点为;(﹣2,﹣4),故(﹣2,﹣4)在第三象限.故选C.考点:关于x轴、y轴对称的点的坐标.7、D【解析】利用SAS判定△BDF≌△CDE,即可一一判断;【详解】解:∵AD是△ABC的中线,

∴BD=CD,

∴S△ABD=S△ADC,故B正确,

在△BDF和△CDE中,,∴△BDF≌△CDE(SAS),故A正确;

∴CE=BF,

∵△BDF≌△CDE(SAS),

∴∠F=∠DEC,

∴FB∥CE,故C正确;

故选D.【点睛】此题主要考查了全等三角形判定和性质,解题的关键是正确寻找全等三角形解决问题.8、C【分析】①由于△ABC和△CDE是等边三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,从而证出△ACD≌△BCE,可推知AD=BE;

②由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由∠PQC=∠DCE,根据内错角相等,两直线平行,可知②正确;

③根据②△CQB≌△CPA(ASA),可知③正确;

④根据∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知④错误;

⑤由BC∥DE,得到∠CBE=∠BED,由∠CBE=∠DAE,得到∠AOB=∠OAE+∠AEO=60°.【详解】解:∵等边△ABC和等边△CDE,

∴AC=BC,CD=CE,∠ACB=∠DCE=60°,

∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,

在△ACD与△BCE中,,∴△ACD≌△BCE(SAS),

∴AD=BE,故①正确,

∵△ACD≌△BCE,

∴∠CBE=∠DAC,

又∵∠ACB=∠DCE=60°,

∴∠BCD=60°,即∠ACP=∠BCQ,

又∵AC=BC,

∴△CQB≌△CPA(ASA),

∴CP=CQ,

又∵∠PCQ=60°可知△PCQ为等边三角形,

∴∠PQC=∠DCE=60°,

∴PQ∥AE,故②正确,

∵△CQB≌△CPA,

∴AP=BQ,故③正确,

∵AD=BE,AP=BQ,

∴AD-AP=BE-BQ,

即DP=QE,

∵∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,

∴∠DQE≠∠CDE,故④错误;

∵BC∥DE,

∴∠CBE=∠BED,

∵∠CBE=∠DAE,

∴∠AOB=∠OAE+∠AEO=60°,故⑤正确;综上所述,正确的有4个,故选C.【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质,利用旋转不变性,找到不变量,是解题的关键.9、B【分析】如图,延长AC交BD于H.求出∠CHB即可解决问题.【详解】如图,延长AC交BD于H.∵△ABC是等边三角形,∴∠ACB=60°,∵∠ACB=∠CBD+∠CHB,∠CBD=15°,∴∠CHB=45°,∵AE∥BD,∴∠EAC=∠CHB=45°,故选B.【点睛】本题考查平行线的性质,等边三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10、D【分析】根据勾股定理可知:以斜边为边长的正方形的面积等于以两条直角边为边长的正方形的面积和,据此求解即可.【详解】解:∵以直角边为边长的两个正方形的面积为35和14,∴AB1=AC1+BC1=35+14=49,∴AB=7(负值舍去),故选:D.【点睛】本题考查勾股定理的实际应用,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.11、A【分析】此题中的等量关系有:①共有190张铁皮;②做的盒底数等于盒身数的2倍时才能正好配套.由此可得答案.【详解】解:根据共有190张铁皮,得方程x+y=190;根据做的盒底数等于盒身数的2倍时才能正好配套,得方程2×8x=22y.列方程组为.故选:A.【点睛】本题考查的是二元一次方程组的应用,找准等量关系是解应用题的关键.12、D【解析】根据三角形内角和定理以及直角三角形的性质即可求出答案.【详解】A.∵∠A+∠B=90°,∠A+∠B+∠C=180°,∴∠C=90°B.∠A+∠B=∠C,∠A+∠B+∠C=180°,∴∠C=90°,∴C.∵12+32=D.设a=1,b=2,c=2,∵12+22≠22,∴△ABC不是直角三角形,故D不能判断.故选:D.【点睛】本题考查了三角形的内角和,勾股定理的逆定理,解题的关键是熟练运用三角形的性质,本题属于基础题型.二、填空题(每题4分,共24分)13、【分析】取AB的中点E,连接OE,DE,易得O,D之间的最大距离为OE+DE,分别求出OE,DE的长,即可得出答案.【详解】如图,取AB的中点E,连接OE,DE,∵AB=4∴AE=2∵四边形ABCD为矩形∴∠DAE=90°∵AD=2,AE=2∴DE=∵在Rt△AOB中,E为斜边AB的中点,∴OE=AB=2又∵OD≤OE+DE∴点到原点的距离最大值=OE+DE=故答案为:.【点睛】本题考查矩形的性质,直角三角形斜边中线的性质,熟记直角三角形斜边上的中线等于斜边的一半,正确作出辅助线是解题的关键.14、80°或20°【分析】根据等腰三角形的性质,已知等腰三角形有一个外角为100°,可知道三角形的一个内角.但没有明确是顶角还是底角,所以要根据情况讨论顶角的度数.【详解】等腰三角形有一个外角是100°即是已知一个角是80°,这个角可能是顶角,也可能是底角,

当是底角时,顶角是180°-80°-80°=20°,因而顶角的度数为80°或20°.

故填80°或20°.【点睛】本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.15、150cm【解析】试题解析:如图,彩色丝带的总长度为=150cm.

16、1【分析】根据勾股定理先求出BC的长,再根据三角形中位线定理和直角三角形的性质求出DE和AE的长,进而由已知可判定四边形AEDF是平行四边形,从而求得其周长.【详解】解:在Rt△ABC中,∵AC=6,AB=8,∴BC=10,∵E是BC的中点,∴AE=BE=5,∴∠BAE=∠B,∵∠FDA=∠B,∴∠FDA=∠BAE,∴DF∥AE,∵D、E分别是AB、BC的中点,∴DE∥AC,DE=AC=3,∴四边形AEDF是平行四边形∴四边形AEDF的周长=2×(3+5)=1.故答案为:1.【点睛】本题考查三角形中位线定理的运用,熟悉直角三角形的性质、等腰三角形的判定以及平行四边形的判定.熟练运用三角形的中位线定理和直角三角形的勾股定理是解题的关键.17、【分析】根据”上加下减”的平移规律解答即可.【详解】解:一次函数的图像沿轴向上平移3个单位长度,则平移后的图像所对应的函数表达为:.故答案:【点睛】本题考查了一次函数图像与几何变换,求直线平移后的解析式要注意平移时候k值不变,解析式变化的规律是:上加下减,左加右减.18、2ab【分析】先确定系数的最大公约数,再确定各项的相同字母,并取相同字母的最低指数次幂.【详解】解:系数的最大公约数是2,各项相同字母的最低指数次幂是ab,所以公因式是2ab,故答案为:2ab.【点睛】本题主要考查公因式的定义,准确掌握公因式的确定方法是解题的关键.三、解答题(共78分)19、作图见解析,【分析】作A点关于BC的对称点A',A'A与BC交于点H,再作A'M⊥AB于点M,与BC交于点N,此时AN+MN最小,连接AN,首先用等积法求出AH的长,易证△ACH≌△A'NH,可得A'N=AC=4,然后设NM=x,利用勾股定理建立方程求出NM的长,A'M的长即为AN+MN的最小值.【详解】如图,作A点关于BC的对称点A',A'A与BC交于点H,再作A'M⊥AB于点M,与BC交于点N,此时AN+MN最小,最小值为A'M的长.连接AN,在Rt△ABC中,AC=4,AB=8,∴BC=∵∴AH=∵CA⊥AB,A'M⊥AB,∴CA∥A'M∴∠C=∠A'NH,由对称的性质可得AH=A'H,∠AHC=∠A'HN=90°,AN=A'N在△ACH和△A'NH中,∵∠C=∠A'NH,∠AHC=∠A'HN,AH=A'H,∴△ACH≌△A'NH(AAS)∴A'N=AC=4=AN,设NM=x,在Rt△AMN中,AM2=AN2-NM2=在Rt△AA'M中,AA'=2AH=,A'M=A'N+NM=4+x∴AM2=AA'2-A'M2=∴解得此时的最小值=A'M=A'N+NM=4+=【点睛】本题考查了最短路径问题,正确作出辅助线,利用勾股定理解直角三角形是解题的关键.20、(1)4πb+16π+8a;(2)四条跑道铺设塑胶共花费92160元.【分析】(1)塑胶环形跑道的总面积可以看成是半径为()的圆的面积-半径为的圆的面积+8个长为a宽为1的矩形面积,据此解答即可;(2)先把a、b和π的值代入(1)题的式子,可得需铺设的总面积,所得结果再乘以120即得结果.【详解】解:(1)塑胶环形跑道的总面积=π()2-π()2+2×4a=π(+16)-+8a=+4πb+16π-+8a=4πb+16π+8a;(2)当a=60,b=20,π=3时,原式=4×3×20+16×3+8×60=768,768×120=92160(元).答:四条跑道铺设塑胶共花费92160元.【点睛】本题考查了列代数式、完全平方公式和代数式求值,属于常见题型,正确读懂题意、熟练掌握基本知识是解题关键.21、见解析.【分析】根据角平分线的性质、线段的垂直平分线的性质即可解决问题.【详解】∵点P在∠ABC的平分线上,∴点P到∠ABC两边的距离相等(角平分线上的点到角的两边距离相等),∵点P在线段BD的垂直平分线上,∴PB=PD(线段的垂直平分线上的点到线段的两个端点的距离相等),如图所示:【点睛】本题考查作图﹣复杂作图、角平分线的性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题.22、(1),理由见解析;(2).【分析】(1)根据角平分线的定义可得∠OBC=∠ABC,∠OCD=∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和和角平分线的定义可得∠OCD=∠ACD=∠A+∠OBD,∠BOC=∠OCD-∠OBC,然后整理即可得解;(2)根据三角形的外角性质以及角平分线的定义表示出∠OBC和∠OCB,再根据三角形的内角和定理解答;【详解】(1),理由如下:∵BO和CO分别是与的平分线,∴,,又∵是的一个外角,∴,∵是的一个外角,∴即(2)∵BO与CO分别是∠CBD与∠BCE的平分线,∴∠OBC=∠CBD,∠OCB=∠BCE又∵∠CBD与∠BCE都是△ABC的外角,∴∠CBD=∠A+∠ACB,∠BCE=∠A+∠ABC,∴∠OBC=∠CBD=(∠A+∠ACB),∠OCB=∠BCE=(∠A+∠ABC),∴∠BOC=180°-(∠OBC+∠OCB)∴【点睛】本题考查了三角形的外角性质,角平分线的定义,三角形的内角和定理,熟记性质并准确识图,整体思想的利用是解题的关键.23、笔记本电脑和台式电脑的单价分别为1元和2400元.【解析】分析:设台式电脑的单价是x元,则笔记本电脑的单价为1.5x元,根据购买了笔记本电脑和台式电脑共120台,列出方程求解即可.详解:设台式电脑的单价是x元,则笔记本电脑的单价为1.5x元,

根据题意得,

解得x=2400,

经检验x=2400是原方程的解,

当x=2400时,1.5x=1.

答:笔记本电脑和台式电脑的单价分别为1元和2400元.点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.24、(1)见解析;(2)见解析;(3)740人【分析】(1)先根据第1组的频数和频率求出抽查学生的总人数,再利用频数、频率及样本总数之间的关系分别求得每一个小组的频数与频率即可得到答案;

(2)根据(1)中频数分布表可得70.5~80.5的频数,据此补全图形即可;

(3)用总人数乘以90.5~100.5小组内的频率即可得到获奖人数.【详解】解:(1)抽取的学生总数为20÷0.05=400,

则60.5~70.5的频率为48÷400=0.12,

70.5~80.5的频数为400×0.2=80,

90.5~100.5的频率为148÷400=0.37,

补全频数分布表如下:分组频数频率50.5~60.5200.0560.5~70.5480.1270.5~80.5800.2080.5~90.51040.2690.5~100.51480.37合计4001(2)由(1)中数据补全频数分布直方图如下:

(3)2000×0.37=740(人),

答:估算出全校获奖学生的人数约为740人.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,根据第1组的数据求出被抽查的学生数是解题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论