版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省无锡新区数学八上期末统考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若等腰三角形有两条边的长度为3和1,则此等腰三角形的周长为A.5 B.7 C.5或7 D.62.如果点P(m,1﹣2m)在第一象限,那么m的取值范围是()A. B. C. D.3.以下列各组长度的线段为边,其中a>3,能构成三角形的是()A.2a+7,a+3,a+4 B.5a²,6a²,10a²C.3a,4a,a D.a-1,a-2,3a-34.如图1,甲、乙两个容器内都装了一定数量的水,现将甲容器中的水匀速注入乙容器中.图2中的线段AB,CD分别表示容器中的水的深度h(厘米)与注入时间t(分钟)之间的函数图象.下列结论错误的是()A.注水前乙容器内水的高度是5厘米B.甲容器内的水4分钟全部注入乙容器C.注水2分钟时,甲、乙两个容器中的水的深度相等D.注水1分钟时,甲容器的水比乙容器的水深5厘米5.下列选项中,属于最简二次根式的是(
)A. B.
C.
D.6.下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm7.下列各式中为最简二次根式的是()A. B. C. D.8.如果一个三角形的一个顶点是它的三条高的交点,那么这个三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等边三角形9.已知关于x的一次函数y=(2﹣m)x+2的图象如图所示,则实数m的取值范围为()A.m>2 B.m<2 C.m>0 D.m<010.四边形ABCD中,若∠A+∠C=180°且∠B:∠C:∠D=3:5:6,则∠A为().A.80° B.70° C.60° D.50°11.下列各式从左到右的变形正确的是()A. B.C. D.12.下列命题是真命题的是()A.三角形的三条高线相交于三角形内一点B.等腰三角形的中线与高线重合C.三边长为的三角形为直角三角形D.到线段两端距离相等的点在这条线段的垂直平分线上二、填空题(每题4分,共24分)13.如图,在中,,,的垂直平分线交于点,垂足是,连接,则的度数为______.14.如图,在△ABC中,∠A=∠B,D是AB边上任意一点DE∥BC,DF∥AC,AC=5cm,则四边形DECF的周长是_____.15.如图,已知在中已知,,,且,,,,…,,则的值为__________.16.分式与的最简公分母为_______________17.如果,那么_______________.18.若点P关于x轴的对称点为P1(2a+b,-a+1),关于y轴对称点的点为P2(4-b,b+2),则点P的坐标为三、解答题(共78分)19.(8分)某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用6000元购进电冰箱的数量与用4800元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,现有两种进货方案①冰箱30台,空调70台;②冰箱50台,空调50台,那么该商店要获得最大利润应如何进货?20.(8分)阅读理解(发现)如果记,并且f(1)表示当x=1时的值,则f(1)=______;表示当时的值,则______;表示当时的值,则=______;表示当时的值,则______;表示当时的值,则______;(拓展)试计算的值.21.(8分)如图,已知为等边三角形,为上一点,为等边三角形.(1)求证:;(2)与能否互相垂直?若能互相垂直,指出点在上的位置,并给予证明;若与不能垂直,请说明理由.22.(10分)如图,在平面直角坐标系中,A(3,0),B(0,3),过点B画y轴的垂线l,点C在线段AB上,连结OC并延长交直线l于点D,过点C画CE⊥OC交直线l于点E.(1)求∠OBA的度数,并直接写出直线AB的解析式;(2)若点C的横坐标为2,求BE的长;(3)当BE=1时,求点C的坐标.23.(10分)如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.24.(10分)计算(1)+|2﹣|﹣﹣(π﹣)0(2)(﹣2)×+325.(12分)如图,已知,,,,请你求出和的大小.26.“天生雾、雾生露、露生耳”,银耳是一种名贵食材,富含人体所需的多种氨基酸和微量元素,具有极高的药用价值和食用价值.某银耳培育基地的银耳成熟了,需要采摘和烘焙.现准备承包给甲和乙两支专业采摘队,若承包给甲队,预计12天才能完成,为了减小银耳因气候变化等原因带来的损失,现决定由甲、乙两队同时采摘,则可以提前8天完成任务.(1)若单独由乙队采摘,需要几天才能完成?(2)若本次一共采摘了300吨新鲜银耳,急需在9天内进行烘焙技术处理.已知甲、乙两队每日烘焙量相当,甲队单独加工(烘焙)天完成100吨后另有任务,剩下的200吨由乙队加工(烘焙),乙队刚好在规定的时间内完工.若甲、乙两队从采摘到加工,每日工资分别是600元和1000元.问:银耳培育基地此次需要支付给采摘队的总工资是多少?
参考答案一、选择题(每题4分,共48分)1、B【分析】因为已知长度为3和1两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论:【详解】①当3为底时,其它两边都为1,∵1+1<3,∴不能构成三角形,故舍去.当3为腰时,其它两边为3和1,3、3、1可以构成三角形,周长为1.故选B.【点睛】本题考查等腰三角形的性质,以及三边关系,分类讨论是关键.2、A【分析】根据第一象限内横,纵坐标都为正,建立一个关于m的不等式组,解不等式组即可.【详解】∵点P(m,1﹣2m)在第一象限,,解得,故选:A.【点睛】本题主要考查象限内点的特点,掌握每个象限内点的特点是解题的关键.3、B【分析】根据三角形的三边关系和a的取值范围逐一判断即可.【详解】解:A.(a+3)+(a+4)=2a+7,不能构成三角形,故本选项不符合题意;B.5a²+6a²>10a²,能构成三角形,故本选项符合题意;C.3a+a=4a,不能构成三角形,故本选项不符合题意;D.(a-1)+(a-2)=2a-3<2a-3+a=3a-3,不能构成三角形,故本选项不符合题意.故选B.【点睛】此题考查的是判断三条线段是否能构成三角形,掌握三角形的三边关系是解决此题的关键.4、D【解析】根据题意和函数图象,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:由图可得,注水前乙容器内水的高度是5厘米,故选项A正确,甲容器内的水4分钟全部注入乙容器,故选项B正确,注水2分钟时,甲容器内水的深度是20×24=10厘米,乙容器内水的深度是:5+(15﹣5)×24=10厘米,故此时甲、乙两个容器中的水的深度相等,故选项注水1分钟时,甲容器内水的深度是20﹣20×14=15厘米,乙容器内水的深度是:5+(15﹣5)×14=7.5厘米,此时甲容器的水比乙容器的水深15﹣7.5=7.5厘米,故选项故选:D.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.5、C【解析】根据最简二次根式的概念进行判断即可.【详解】中被开方数含分母,不属于最简二次根式,A错误;=2,不属于最简二次根式,B错误;属于最简二次根式,C正确;不属于最简二次根式,D错误.故选C.【点睛】本题考查的是最简二次根式的概念,最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.6、D【详解】A.因为2+3=5,所以不能构成三角形,故A错误;B.因为2+4<6,所以不能构成三角形,故B错误;C.因为3+4<8,所以不能构成三角形,故C错误;D.因为3+3>4,所以能构成三角形,故D正确.故选D.7、C【分析】根据最简二次根式的定义解答即可.【详解】A、,故不是最简二次根式;B、,故不是最简二次根式;C,、是最简二次根式,符合题意;D、,故不是最简二次根式;故选C.【点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.8、B【分析】根据直角三角形的判定方法,对选项进行一一分析,排除错误答案.【详解】解:A、锐角三角形,三条高线交点在三角形内,故错误;B、因为直角三角形的直角所在的顶点正好是三条高线的交点,所以可以得出这个三角形是直角三角形,故正确;C、钝角三角形,三条高线不会交于一个顶点,故错误;D、等边三角形,三条高线交点在三角形内,故错误.故选B.【点睛】主要考查学生对直角三角形的性质的理解及掌握.9、B【分析】根据一次函数的增减性即可列出不等式,解不等式即可.【详解】由图可知:1﹣m>0,∴m<1.故选B.【点睛】此题考查的是一次函数图像及性质,掌握一次函数图像及性质与一次项系数的关系是解决此题的关键.10、A【解析】试题分析:由∠A+∠C=180°根据四边形的内角和定理可得∠B+∠D=180°,再设∠B=3x°,∠C=5x°,∠D=6x°,先列方程求得x的值,即可求得∠C的度数,从而可以求得结果.∵∠B:∠C:∠D=3:5:6∴设∠B=3x°,∠C=5x°,∠D=6x°∵∠A+∠C=180°∴∠B+∠D=180°∴3x+6x=180,解得x=20∴∠C=100°∴∠A=180°-100°=80°故选A.考点:四边形的内角和定理点评:四边形的内角和定理是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.11、C【分析】由分式的加法法则的逆用判断A,利用约分判断B,利用分式的基本性质判断C,利用约分判断D.【详解】解:由,所以A错误,由,所以B错误,由,所以C正确,由,所以D错误.故选C.【点睛】本题考查分式加减运算的逆运算与分式的基本性质,掌握运算法则与基本性质是关键,12、D【分析】利用直角三角形三条高线相交于直角顶点可对A进行判断;根据等腰三角形三线合一可对B进行判断;根据勾股定理的逆定理可对C进行判断;根据线段垂直平分线定理的逆定理可对D进行判断.【详解】解:A、锐角三角形的三条高线相交于三角形内一点,直角三角形三条高线相交于直角顶点,所以A选项错误;B、等腰三角形的底边上的中线与与底边上的高重合,所以B选项错误;C、因为,所以三边长为,,不为为直角三角形,所以B选项错误;D、到线段两端距离相等的点在这条线段的垂直平分线上,所以D选项正确.故选:D.【点睛】本题考查了命题与定理:要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.二、填空题(每题4分,共24分)13、【分析】先利用线段垂直平分线的性质得到EA=EB,则根据等腰三角形的性质得∠ABE=∠A=30°,再利用三角形内角和计算出∠ABC的度数,然后计算∠ABC-∠ABE即可.【详解】解:∵DE垂直平分AB,
∴EA=EB,
∴∠ABE=∠A=30°,
∵AB=AC,
∴∠ABC=∠C,
∴∠ABC=(180°-30°)=75°,
∴∠EBC=∠ABC-∠ABE=75°-30°=45°.
故答案为:45°.【点睛】本题考查了等腰三角形的性质:等腰三角形的两腰相等;等腰三角形的两个底角相等;等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.也考查了线段垂直平分线的性质.14、10cm【解析】求出BC,求出BF=DF,DE=AE,代入得出四边形DECF的周长等于BC+AC,代入求出即可.【详解】解:∵∠A=∠B,
∴BC=AC=5cm,
∵DF∥AC,
∴∠A=∠BDF,
∵∠A=∠B,
∴∠B=∠BDF,
∴DF=BF,
同理AE=DE,
∴四边形DECF的周长为:CF+DF+DE+CE=CF+BF+AE+CE=BC+AC=5cm+5cm=10cm,
故答案为10cm.【点睛】本题考查了平行线的性质,等腰三角形的性质和判定,关键是求出BF=DF,DE=AE.15、【分析】根据题意,由30°直角三角形的性质得到,,……,然后找出题目的规律,得到,即可得到答案.【详解】解:∵,,∴,∵,∴,∴,∴,∴,∴;同理可得:;……∴;当时,有;故答案为:.【点睛】本题考查了30°直角三角形的性质,解题的关键是观察图形找出图形中线段之间的关系,得到,从而进行解题.16、ab1【分析】最简公分母是按照相同字母取最高次幂,所有不同字母都写在积里,则易得分式与的最简公分母为ab1.【详解】∵和中,字母a的最高次幂是1,字母b的最高次幂是1,∴分式与的最简公分母为ab1,故答案为ab1【点睛】本题考查了最简公分母:通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.17、1【分析】根据完全平方公式进行求解即可.【详解】解:∵,∴,∴,故答案为1.【点睛】本题主要考查完全平方公式,熟练掌握完全平方公式是解题的关键.18、(2a+b,b+2)【解析】答案应为(-9,-3)解决此题,先要根据关于x轴的对称点为P1(2a+b,-a+1)得到P点的一个坐标,根据关于y轴对称的点P2(4-b,b+2)得到P点的另一个坐标,由此得到一个方程组,求出a、b的值,即可得到P点的坐标.解:∵若P关于x轴的对称点为P1(2a+b,-a+1),∴P点的坐标为(2a+b,a-1),∵关于y轴对称的点为P2(4-b,b+2),∴P点的坐标为(b-4,b+2),则,解得.代入P点的坐标,可得P点的坐标为(-9,-3).三、解答题(共78分)19、(1)每台电冰箱与空调的进价分别是2000元,1600元;(2)该商店要获得最大利润应购进冰箱30台,空调70台【分析】(1)根据每台电冰箱的进价比每台空调的进价多400元,商店用6000元购进电冰箱的数量与用4800元购进空调的数量相等,可以列出相应的分式方程,从而可以解答本题;(2)根据题意和(1)中的结果,可以计算出两种方案下获得的利润,然后比较大小,即可解答本题.【详解】解:(1)设每台空调的进件为x元,则每台电冰箱的进件为(x+400)元,,解得,x=1600,经检验,x=1600是原分式方程的解,则x+400=2000元,答:每台电冰箱与空调的进价分别是2000元,1600元;(2)当购进冰箱30台,空调70台,所得利润为:(2100﹣2000)×30+(1750﹣1600)×70=13500(元),当购进冰箱50台,空调50台,所得利润为:(2100﹣2000)×50+(1750﹣1600)×50=12500(元),∵13500>12500,∴该商店要获得最大利润应购进冰箱30台,空调70台.【点睛】本题考查分式方程的应用,解答本题的关键是明确题意,利用分式方程的知识解答,注意分式方程一定要检验.20、,,,,;2012.5【分析】(1)【发现】分别把x=1、2、、3、代入即可得出答案(2)【拓展】根据f的变化规律得到然后求解即可.【详解】解:【发现】;;;;【拓展】∵∴∴∴【点睛】本题考查了函数值,数字变化规律,读懂题目信息,理解变化规律f的方法并确定出是解题的关键.21、(1)见解析;(2)AQ与CQ能互相垂直,此时点P在BC的中点【分析】(1)根据等边三角形性质得出AB=AC,AP=AQ,∠BAC=∠B=∠PAQ=60°,求出∠BAP=∠CAQ,根据SAS证△ABP≌△ACQ,推出∠ACQ=∠B=60°=∠BAC,根据平行线的判定推出即可.
(2)根据等腰三角形性质求出∠BAP=30°,求出∠BAQ=90°,根据平行线性质得出∠AQC=90°,即可得出答案.【详解】(1)证明:∵△ABC和△APQ是等边三角形,
∴AB=AC,AP=AQ,∠BAC=∠B=∠PAQ=60°,
∴∠BAP=∠CAQ=60°-∠PAC,
在△ABP和△ACQ中,,∴△ABP≌△ACQ(SAS),
∴∠ACQ=∠B=60°=∠BAC,
∴AB∥CQ;(2)AQ与CQ能互相垂直,此时点P在BC的中点,
证明:∵当P为BC边中点时,∠BAP=∠BAC=30°,
∴∠BAQ=∠BAP+∠PAQ=30°+60°=90°,
又∵AB∥CQ,
∴∠AQC=90°,
即AQ⊥CQ.【点睛】本题考查了等边三角形性质,全等三角形的性质和判定,平行线性质和判定,等腰三角形性质的应用,主要考查学生的推理能力.22、(3)直线AB的解析式为:y=﹣x+3;(3)BE=3;(3)C的坐标为(3,3).【解析】(3)根据A(3,0),B(0,3)可得OA=OB=3,得出△AOB是等腰直角三角形,∠OBA=45°,进而求出直线AB的解析式;(3)作CF⊥l于F,CG⊥y轴于G,利用ASA证明Rt△OGC≌Rt△EFC(ASA),得出EF=OG=3,那么BE=3;(3)设C的坐标为(m,-m+3).分E在点B的右侧与E在点B的左侧两种情况进行讨论即可.【详解】(3)∵A(3,0),B(0,3),∴OA=OB=3.∵∠AOB=90°,∴∠OBA=45°,∴直线AB的解析式为:y=﹣x+3;(3)作CF⊥l于F,CG⊥y轴于G,∴∠OGC=∠EFC=90°.∵点C的横坐标为3,点C在y=﹣x+3上,∴C(3,3),CG=BF=3,OG=3.∵BC平分∠OBE,∴CF=CG=3.∵∠OCE=∠GCF=90°,∴∠OCG=∠ECF,∴Rt△OGC≌Rt△EFC(ASA),∴EF=OG=3,∴BE=3;(3)设C的坐标为(m,﹣m+3).当E在点B的右侧时,由(3)知EF=OG=m﹣3,∴m﹣3=﹣m+3,∴m=3,∴C的坐标为(3,3);当E在点B的左侧时,同理可得:m+3=﹣m+3,∴m=3,∴C的坐标为(3,3).【点睛】此题考查一次函数,等腰直角三角形的性质,全等三角形的判定与性质,解题关键在于作辅助线23、(1)证明见解析(2)40°.【分析】(1)根据菱形的对边平行且相等可得AB=C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吉林艺术学院《音乐剧鉴赏与实践Ⅰ》2021-2022学年第一学期期末试卷
- 吉林艺术学院《色彩基础II》2021-2022学年第一学期期末试卷
- 夫妻公司的解散协议书范本范本
- 2024年供货环保协议书模板
- 2024年大宗贸易合作共赢协议书模板
- 相桥书院车位转让协议书范文
- 吉林师范大学《网球教学与训练Ⅰ》2021-2022学年第一学期期末试卷
- 整车零配件收购协议书范文范本
- 教育软件开发具体流程及管理规范
- 移动医疗服务护理团队配置方案
- 淡雅古典诗词中国风PPT模板
- (完整版)初中数学中考考试大纲
- 施工方案-悬挑平台施工方案
- 基于学科核心素养下提升小学生英语语言能力的路径研究
- 纯燃高炉煤气锅炉吸热特点及运行
- 标准电线平方数和直径一览表
- 工程参建各方责任主体开展质量安全提升行动责任清单
- ISO9000质量管理体系(收藏)
- 1.水轮发电机结构及工作原理介绍
- 英语朗读技巧
- 食堂供餐招标评分表
评论
0/150
提交评论