版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河北省石家庄市裕华区数学八上期末监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.在同一平面直角坐标系中,直线和直线的位置可能是()A. B.C. D.2.下列因式分解结果正确的是()A.2a2﹣4a=a(2a﹣4) B.C.2x3y﹣3x2y2+x2y=x2y(2x﹣3y) D.x2+y2=(x+y)23.如图,在三角形纸片ABC中,∠ACB=90°,BC=3,AB=5,在AC上取一E,以BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,则CE的长度为()A.1 B. C.2 D.4.已知不等式组的解集如图所示(原点没标出,数轴单位长度为1),则a的值为()A.﹣1 B.0 C.1 D.25.一项工程,甲单独做要x天完成,乙单独做要y天完成,则甲、乙合做完成工程需要的天数为()A. B. C. D.6.如图,在△ABC中,∠ABC=90°,∠C=20°,DE是边AC的垂直平分线,连结AE,则∠BAE等于()A.20° B.40° C.50° D.70°7.如图,分别给出了变量y与x之间的对应关系,y不是x的函数的是()A. B. C. D.8.如图,直线与直线交于点,则方程组解是()A. B. C. D.9.下列命题中,真命题是()A.对顶角不一定相等 B.等腰三角形的三个角都相等C.两直线平行,同旁内角相等 D.等腰三角形是轴对称图形10.如图所示,有一个长、宽各2米,高为3米且封闭的长方体纸盒,一只昆虫从顶点A要爬到顶点B,那么这只昆虫爬行的最短路程为()A.3米 B.4米 C.5米 D.6米二、填空题(每小题3分,共24分)11.用4块完全相同的长方形拼成正方形(如图),用不同的方法,计算图中阴影部分的面积,可得到1个关于的等式为________.12.若与是同类项,则的立方根是.13.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,则旅客可携带的免费行李的最大质量为kg14.已知一次函数y=(k-4)x+2,若y随x的增大而增大,则k的值可以是_____(写出一个答案即可).15.如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边长分别为6m和8m,斜边长为10m.按照输油中心O到三条支路的距离相等来连接管道,则O到三条支路的管道总长(计算时视管道为线,中心O为点)是_____.16.如图,从镜子中看到一钟表的时针和分针,此时的实际时刻是________.17.如图,已知正六边形ABCDEF的边长是5,点P是AD上的一动点,则PE+PF的最小值是_____.18.直线y=2x-6与y轴的交点坐标为________.三、解答题(共66分)19.(10分)已知a,b,c满足=|c﹣17|+b2﹣30b+225,(1)求a,b,c的值;(2)试问以a,b,c为边能否构成三角形?若能构成三角形,求出三角形的周长和面积;若不能构成三角形,请说明理由.20.(6分)先化简,再求值:,其中,满足.21.(6分)如图,直线分别与x轴,y轴相交于A,B两点,0为坐标原点,A点的坐标为(4,0)(1)求k的值;(2)过线段AB上一点P(不与端点重合)作x轴,y轴的垂线,乖足分别为M,N.当长方形PMON的周长是10时,求点P的坐标.22.(8分)如图,在长方形中,,,点为上一点,将沿折叠,使点落在长方形内点处,连接,且,求的度数和的长.23.(8分)(1)解方程:.(2)计算:.24.(8分)如图①,将一个长方形沿着对角线剪开即可得到两个全等的三角形,再把△ABC沿着AC方向平移,得到图②中的△GBH,BG交AC于点E,GH交CD于点F.在图②中,除△ACD与△HGB全等外,你还可以指出哪几对全等的三角形(不能添加辅助线和字母)?请选择其中一对加以证明.25.(10分)如图,直线l:y1=﹣x﹣1与y轴交于点A,一次函数y2=x+3图象与y轴交于点B,与直线l交于点C,(1)画出一次函数y2=x+3的图象;(2)求点C坐标;(3)如果y1>y2,那么x的取值范围是______.26.(10分)计算下列各题:(1);(2).
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据一次函数的性质,对k的取值分三种情况进行讨论,排除错误选项,即可得到结果.【详解】解:由题意知,分三种情况:当k>2时,y=(k-2)x+k的图象经过第一、二、三象限;y=kx的图象y随x的增大而增大,并且l2比l1倾斜程度大,故B选项错误,C选项正确;当0<k<2时,y=(k-2)x+k的图象经过第一、二、四象限;y=kx的图象y随x的增大而增大,A、D选项错误;当k<0时,y=(k-2)x+k的图象经过第二、三、四象限,y=kx的图象y随x的增大而减小,但l1比l2倾斜程度大.∴直线和直线的位置可能是C.故选:C.【点睛】本题考查了一次函数图象与系数的关系:对于y=kx+b(k为常数,k≠0),当k>0,b>0,y=kx+b的图象在一、二、三象限;当k>0,b<0,y=kx+b的图象在一、三、四象限;当k<0,b>0,y=kx+b的图象在一、二、四象限;当k<0,b<0,y=kx+b的图象在二、三、四象限.2、B【分析】根据因式分解的方法对各式进行判断即可得出答案.【详解】A、2a2-4a=2a(a-2),故此选项错误;B、-a2+2ab-b2=-(a-b)2,此选项正确;C、2x3y-3x2y2+x2y=x2y(2x-3y+1),故此选项错误;D、x2+y2无法分解因式,故此选项错误;故选B.【点睛】此题主要考查了提取公因式法以及公式法分解因式,熟练掌握乘法公式是解题关键.3、B【解析】试题分析:由Rt△ABC中,BC=3,AB=5,利用勾股定理,可求得AC的长,由折叠的性质,可得CD的长,然后设DE=x,由勾股定理,即可列方程求得结果.∵Rt△ABC中,BC=3,AB=5,∴由折叠的性质可得:AB=BD=5,AE=DE,∴CD=BD-BC=2,设DE=x,则AE=x,∴CE=AC-AE=4-x,∵在Rt△CDE中,DE2=CD2+BCE2,∴x2=22+(4-x)2,解得:,∴.故选B.考点:此题主要考查了图形的翻折变换,勾股定理点评:解题过程中应注意折叠后哪些线段是重合的,相等的,如果想象不出哪些线段相等,可以动手折叠一下即可.4、D【分析】首先解不等式组,求得其解集,又由数轴知该不等式组有3个整数解即可得到关于a的方程,解方程即可求得a的值.【详解】解:∵,解不等式得:,解不等式得:,∴不等式组的解集为:,由数轴知该不等式组有3个整数解,
所以这3个整数解为-2、-1、0,
则,
解得:,
故选:D.【点睛】本题考查了一元一次不等式组的整数解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.5、A【解析】根据工程问题的关系:工作量=工作效率×工作时间,把总工作量看作单位“1”,可知甲的工作效率为,乙的工作效率为,因此甲乙合作完成工程需要:1÷(+)=.故选A.6、C【分析】根据三角形内角和定理求出∠BAC,根据线段垂直平分线的性质求出CE=AE,求出∠EAC=∠C=20°,即可得出答案.【详解】∵在△ABC中,∠ABC=90°,∠C=20°,∴∠BAC=180°−∠B−∠C=70°,∵DE是边AC的垂直平分线,∠C=20°,∴CE=AE,∴∠EAC=∠C=20°,∴∠BAE=∠BAC−∠EAC=70°−20°=50°,故选C.【点睛】此题考查线段垂直平分线的性质,解题关键在于掌握其性质.7、B【分析】根据函数的定义判断即可.【详解】A、C、D中y均是x的函数,不符合题意;B中每一个自变量x对应两个y值,故y不是x的函数,符合题意.故选B.【点睛】本题考查的是函数的定义,解答本题的关键是熟练掌握函数的定义:对于两个变量x、y,x每取一个值,y都有唯一的值与之对应;注意要强调“唯一”.8、B【分析】根据一次函数与二元一次方程组的关系解答即可.【详解】∵直线与直线交于点,∴方程组即的解是.故选B.【点睛】本题主要考查一次函数函数与二元一次方程组的关系,函数图象交点坐标为两函数解析式组成的方程组的解.9、D【分析】利用对顶角的性质、等腰三角形的性质、平行线的性质分别判断后即可确定正确的选项.【详解】解:A、对顶角相等,故错误,是假命题;B、等腰三角形的两个底角相等,故错误,是假命题;C、两直线平行,同旁内角互补,故错误,是假命题;D、等腰三角形是轴对称图形,对称轴是底边上的高所在直线,故正确,是真命题.故选:D.【点睛】考查了命题与定理的知识,解题的关键是了解对顶角的性质、等腰三角形的性质、平行线的性质,难度不大.10、C【解析】解:由题意得,路径一:;路径二:;路径三:为最短路径,故选C.二、填空题(每小题3分,共24分)11、(a+b)2﹣(a﹣b)2=4ab【分析】根据长方形面积公式列①式,根据面积差列②式,得出结论.【详解】S阴影=4S长方形=4ab①,S阴影=S大正方形﹣S空白小正方形=(a+b)2﹣(b﹣a)2②,由①②得:(a+b)2﹣(a﹣b)2=4ab.故答案为(a+b)2﹣(a﹣b)2=4ab.【点睛】本题考查了完全平方公式几何意义的理解,此题有机地把代数与几何图形联系在一起,利用几何图形的面积公式直接得出或由其图形的和或差得出.12、2.【解析】试题分析:若与是同类项,则:,解方程得:.∴=2﹣3×(﹣2)=8.8的立方根是2.故答案为2.考点:2.立方根;2.合并同类项;3.解二元一次方程组;4.综合题.13、20【解析】设函数表达式为y=kx+b把(30,300)、(50、900)代入可得:y=30x-600当y=0时x=20所以免费行李的最大质量为20kg14、1【分析】根据一次函数的性质列出一个关于k的不等式,再写出一个符合条件的k值即可.【详解】因y随x的增大而增大则解得因此,k的值可以是1故答案为:1.(注:答案不唯一)【点睛】本题考查了一次函数的性质:增减性,根据函数的增减性求出k的取值范围是解题关键.15、6m【分析】根据三角形的面积公式,RT△ABC的面积等于△AOB、△AOC、△BOC三个三角形面积的和列式求出点O到三边的距离,然后乘以3即可.【详解】设点O到三边的距离为h,
则,
解得h=2m,
∴O到三条支路的管道总长为:3×2=6m.
故答案为:6m.【点睛】本题考查了角平分线上的点到两边的距离相等的性质,以及勾股定理,三角形的面积的不同表示,根据三角形的面积列式求出点O到三边的距离是解题的关键.16、9:1【解析】试题分析:由图中可以看出,此时的时间为9:1.考点:镜面对称.17、10【解析】利用正多边形的性质,可得点B关于AD对称的点为点E,连接BE交AD于P点,那么有PB=PF,PE+PF=BE最小,根据正六边形的性质可知三角形APB是等边三角形,因此可知BE的长为10,即PE+PF的最小值为10.故答案为10.18、(0,-6)【分析】令x=0可求得相应y的值,则可求得答案.【详解】解:
在y=2x-6中,令x=0可得y=-6,
∴直线y=2x-6与y轴的交点坐标为(0,-6),
故答案为:(0,-6).【点睛】本题考查了一次函数图象上点的坐标特征,掌握函数图象与坐标轴交点的求法是解题的关键.三、解答题(共66分)19、(1)a=8,b=15,c=17;(2)能,2【分析】(1)根据算术平方根,绝对值,平方的非负性即可求出a、b、c的值;(2)根据勾股定理的逆定理即可求出此三角形是直角三角形,由此得到面积和周长【详解】解:(1)∵a,b,c满足=|c﹣17|+b2﹣30b+225,∴,∴a﹣8=0,b﹣15=0,c﹣17=0,∴a=8,b=15,c=17;(2)能.∵由(1)知a=8,b=15,c=17,∴82+152=1.∴a2+c2=b2,∴此三角形是直角三角形,∴三角形的周长=8+15+17=40;三角形的面积=×8×15=2.【点睛】此题考查算术平方根,绝对值,平方的非负性,勾股定理的逆定理判断三角形的形状.20、,6【分析】根据整式的四则混合运算先化简代数式,再根据确定x和y的值,代入求值即可.【详解】解:=4x2-4xy+y2-4x2+y2+3xy-2y2=.∵∴,∴,∴原式=.【点睛】本题考查代数式的化简求值.熟练掌握整式的乘法、平方差公式、完全平方公式、绝对值及算术平方根的非负性是解题的关键.21、(1)k=﹣2;(2)点P的坐标为(3,2).【解析】试题分析:(1)因为直线分别与轴,轴相交于两点,O为坐标原点,A点的坐标为即直线经过所以解之即可;
(2)因为四边形是矩形,点P在直线上,设则而由此即可得到关于的方程,解方程即可求得.试题解析:(1)∵直线y=kx+8经过A(4,0),∴0=4k+8,∴k=−2.(2)∵点P在直线y=−2x+8上,设P(t,−2t+8),∴PN=t,PM=−2t+8,∵四边形PNOM是矩形,解得∴点P的坐标为22、【分析】根据勾股定理的逆定理即可得证;说明点D、E、F三点共线,再根据勾股定理即可求解.【详解】根据折叠可知:AB=AF=4,
∵AD=5,DF=3,
31+41=51,
即FD1+AF1=AD1,
根据勾股定理的逆定理,得△ADF是直角三角形,
∴∠AFD=90°,
设BE=x,
则EF=x,
∵根据折叠可知:∠AFE=∠B=90°,
∵∠AFD=90°,
∴∠DFE=180°,
∴D、F、E三点在同一条直线上,
∴DE=3+x,
CE=5-x,DC=AB=4,
在Rt△DCE中,根据勾股定理,得
DE1=DC1+EC1,即(3+x)1=41+(5-x)1,
解得x=1.
答:BE的长为1.【点睛】本题考查了折叠问题、勾股定理及其逆定理、矩形的性质,解决本题的关键是勾股定理及其逆定理的运用.23、(1);(2)【分析】(1)先将分式方程化成整式方程,解整式方程求出x的值,再检验,即可得出答案;(2)先化简根号和绝对值,再根据二次根式的混合运算计算即可得出答案.【详解】(1)解:去分母,得,解得.检验:当时,.原分式方程的解为.(2)解:原式.【点睛】本题考查的是解分式方程和二次根式的混合运算,属于基础题型,需要熟练掌握相关的运算步骤和方法.24、△AGE≌△HCF,△EBC≌△FDG.【解析】分析:本题是开放题,应先确定选择哪对三角形,再对应三角形全等条件求解.三角形全等条件中必须是三个元素,并且一定有一组对应边相等.详解:△AGE≌△HCF,△EBC≌△FDG.选择证明△AGE≌△HCF,过程如下:由平移可知AG=CH.∵△ACD与△HGB全等,∴∠A=∠H.又BG⊥AD,DC⊥BH,∴∠AGE=∠HCF
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗机构医疗设备采购合同
- 加工合同范例英文
- 岭南师范学院《行政法与行政诉讼法》2021-2022学年第一学期期末试卷
- 岭南师范学院《工程制图》2021-2022学年第一学期期末试卷
- 农业现代化智能农业装备研发与应用方案
- 代发论文合同模板
- 医疗管理合同模板
- 岭南师范学院《测量学》2021-2022学年第一学期期末试卷
- 人工智能驱动的生产过程优化合同
- 关于ktv保安合同范例
- 中汇富能排矸场设计
- 2024年保安员证考试题库及答案(共160题)
- 2024年大学试题(财经商贸)-统计预测与决策考试近5年真题集锦(频考类试题)带答案
- 大学生职业生涯规划成品
- 主要负责人和安全生产管理人员安全培训课件初训修订版
- 人教版2024新版八年级全一册信息技术第1课 开启物联网之门 教学设计
- 2024220kV 预制舱式模块化海上风电升压站
- 2024秋期国家开放大学《国家开放大学学习指南》一平台在线形考(任务一)试题及答案
- 2024年新人教版道德与法治一年级上册 9 作息有规律 教学课件
- 2024新人教版道法一年级上册第二单元:过好校园生活大单元整体教学设计
- 2024年深圳技能大赛-鸿蒙移动应用开发(计算机程序设计员)职业技能竞赛初赛理论知识
评论
0/150
提交评论