2025届江西省高安市吴有训实验学校数学八上期末达标检测试题含解析_第1页
2025届江西省高安市吴有训实验学校数学八上期末达标检测试题含解析_第2页
2025届江西省高安市吴有训实验学校数学八上期末达标检测试题含解析_第3页
2025届江西省高安市吴有训实验学校数学八上期末达标检测试题含解析_第4页
2025届江西省高安市吴有训实验学校数学八上期末达标检测试题含解析_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江西省高安市吴有训实验学校数学八上期末达标检测试题题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列各点中,位于第四象限的点是()A.(3,4) B.(3,4) C.(3,4) D.(3,4)2.在,,,0,这四个数中,为无理数的是()A. B. C. D.03.如图,能判定EB∥AC的条件是()A.∠C=∠1 B.∠A=∠2C.∠C=∠3 D.∠A=∠14.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140° B.100° C.50° D.40°5.下列四种垃圾分类回收标识中,是轴对称图形的是()A. B.C. D.6.如图,在,中,,,,点,,三点在同一条直线上,连结,则下列结论中错误的是()A. B.C. D.7.如图,△ABC的角平分线BE,CF相交于点O,且∠FOE=121°,则∠A的度数是()A.52° B.62° C.64° D.72°8.王老师乘公共汽车从地到相距千米的地办事,然后乘出租车返回,出租车的平均速度比公共汽车多千米/时,回来时所花的时间比去时节省了,设公共汽车的平均速度为千米/时,则下面列出的方程中正确的是()A. B.C. D.9.如图,在平面直角坐标系中,位于第二象限,点的坐标是,先把向右平移3个单位长度得到,再把绕点顺时针旋转得到,则点的对应点的坐标是()A. B. C. D.10.如图,在△ABC中,BC=8cm,AB的垂直平分线交AB于点D,交边AC于点E,△BCE的周长等于18cm,则AC的长等于()A.6cm B.8cm C.10cm D.12cm二、填空题(每小题3分,共24分)11.实数的相反数是__________.12.如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以2cm每秒的速度运动,设运动时间为t秒.(1)当t=_____.时,线段AP是∠CAB的平分线;(2)当t=_____时,△ACP是以AC为腰的等腰三角形.13.如图,从边长为(a+3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠无缝隙),则拼成的长方形的另一边长是__________.14.如图,∠BAC=30°,点D为∠BAC内一点,点E,F分别是AB,AC上的动点.若AD=9,则△DEF周长的最小值为____.15.如图,己知,点,,,…在射线ON上,点,,,…在射线OM上,,,,…均为等边三角形,若,则的边长为________.16.如图,在中,,点和点在直线的同侧,,连接,则的度数为__________.17.若关于的方程无解,则的值为________.18.如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.已知CD=2,则AB的长度等于____________.三、解答题(共66分)19.(10分)如图,直角坐标系中,点A的坐标为(3,0),以线段OA为边在第四象限内作等边△AOB,点C为轴正半轴上一动点(OC>3),连结BC,以线段BC为边在第四象限内作等边△CBD,直线DA交轴于点E.(1)证明∠ACB=∠ADB;(2)若以A,E,C为顶点的三角形是等腰三角形,求此时C点的坐标;(3)随着点C位置的变化,的值是否会发生变化?若没有变化,求出这个值;若有变化,说明理由.20.(6分)如图,在平行四边形ABCD中,点E为AD的中点,延长CE交BA的延长线于点F.(1)求证:AB=AF;(2)若BC=2AB,∠BCD=100°,求∠ABE的度数.21.(6分)如图,在平面直角坐标系中,,,,点、在轴上且关于轴对称.(1)求点的坐标;(2)动点以每秒2个单位长度的速度从点出发沿轴正方向向终点运动,设运动时间为秒,点到直线的距离的长为,求与的关系式;(3)在(2)的条件下,当点到的距离为时,连接,作的平分线分别交、于点、,求的长.22.(8分)如图,在中,,点为边上的动点,点从点出发,沿边向点运动,当运动到点时停止,若设点运动的时间为秒,点运动的速度为每秒2个单位长度.(1)当时,=,=;(2)求当为何值时,是直角三角形,说明理由;(3)求当为何值时,,并说明理由.23.(8分)计算(1)(2)化简,再从,1,﹣2中选择合适的x值代入求值.24.(8分)(材料阅读)我们曾解决过课本中的这样一道题目:如图,四边形是正方形,为边上一点,延长至,使,连接.……提炼1:绕点顺时针旋转90°得到;提炼2:;提炼3:旋转、平移、轴对称是图形全等变换的三种方式.(问题解决)(1)如图,四边形是正方形,为边上一点,连接,将沿折叠,点落在处,交于点,连接.可得:°;三者间的数量关系是.(2)如图,四边形的面积为8,,,连接.求的长度.(3)如图,在中,,,点在边上,.写出间的数量关系,并证明.25.(10分)命题:如果三角形一边上的中线与这条边所对内角的平分线重合,那么这个三角形是等腰三角形.请自己画图,写出已知、求证,并对命题进行证明.已知:如图,求证:证明:26.(10分)如图,△ACB和△ECD都是等边三角形,点A、D、E在同一直线上,连接BE.(1)求证:AD=BE;(2)求∠AEB的度数.

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据平面直角坐标系中点的坐标特征解答即可,第四象限内点的横坐标大于0,纵坐标小于0.【详解】∵第四象限内点的横坐标大于0,纵坐标小于0,∴(3,4)位于第四象限.故选A.【点睛】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.2、C【解析】根据无理数的定义:无限不循环小数,进行判断即可.【详解】-3,,0为有理数;为无理数.故选:C.【点睛】本题考查无理数,熟记无理数概念是解题关键.3、D【分析】直接根据平行线的判定定理对各选项进行逐一分析即可.【详解】解:A、∠C=∠1不能判定任何直线平行,故本选项错误;

B、∠A=∠2不能判定任何直线平行,故本选项错误;

C、∠C=∠3不能判定任何直线平行,故本选项错误;

D、∵∠A=∠1,∴EB∥AC,故本选项正确.

故选:D.【点睛】本题考查的是平行线的判定,用到的知识点为:内错角相等,两直线平行.4、B【解析】如图,分别作点P关于OB、OA的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,此时△PMN周长取最小值.根据轴对称的性质可得OC=OP=OD,∠CON=∠PON,∠POM=∠DOM;因∠AOB=∠MOP+∠PON=40°,即可得∠COD=2∠AOB=80°,在△COD中,OC=OD,根据等腰三角形的性质和三角形的内角和定理可得∠OCD=∠ODC=50°;在△CON和△PON中,OC=OP,∠CON=∠PON,ON=ON,利用SAS判定△CON≌△PON,根据全等三角形的性质可得∠OCN=∠NPO=50°,同理可得∠OPM=∠ODM=50°,所以∠MPN=∠NPO+∠OPM=50°+50°=100°.故选B.点睛:本题考查了轴对称的性质、等腰三角形的性质、三角形的内角和定理、全等三角形的判定与性质等知识点,根据轴对称的性质证得△OCD是等腰三角形,求得得∠OCD=∠ODC=50°,再利用SAS证明△CON≌△PON,△ODM≌△OPM,根据全等三角形的性质可得∠OCN=∠NPO=50°,∠OPM=∠ODM=50°,再由∠MPN=∠NPO+∠OPM即可求解.5、D【分析】根据轴对称图形的概念即可解决本题.【详解】由轴对称图形概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,叫做轴对称图形能够判断出D为轴对称图形.故答案选择D【点睛】本题考查了轴对称图形概念,难度系数不高,解题关键在于正确理解轴对称图形概念.6、C【分析】根据题意,通过三角形的全等性质及判定定理,角的和差,勾股定理进行逐一判断即可得解.【详解】A.∵,∴,即,∵在和中,,∴,∴,故A选项正确;B.∵,∴,∴,则,故B选项正确;C.∵,∴只有当时,才成立,故C选项错误;D.∵为等腰直角三角形,∴,∴,∵,∴,∴,故D选项正确,故选:C.【点睛】本题主要考查了全等三角形的判定与性质,勾股定理,以及等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.7、B【分析】根据三角形的内角和得到∠OBC+∠OCB=59°,根据角平分线的定义得到∠ABC+∠ACB=2(∠OBC+∠OCB)=118°,由三角形的内角和即可得到结论.【详解】∵∠BOC=∠EOF=121°,∴∠OBC+∠OCB=59°,∵△ABC的角平分线BE,CF相交于点O,∴∠ABC+∠ACB=2(∠OBC+∠OCB)=118°,∴∠A=180°﹣118°=62°,故选:B.【点睛】本题考查了三角形的内角和,角平分线的定义,熟练掌握三角形的内角和是解题的关键.8、A【分析】根据题意得到回来时的速度为(x+20)千米/时,根据时间等于路程除以速度即可列出方程.【详解】根据题意得到回来时的速度为(x+20)千米/时,去时的时间是小时,回来时的时间是,∵回来时所花的时间比去时节省了,∴,故选:A.【点睛】此题考查分式方程的实际应用,正确理解时间、速度、路程之间的数量关系是解题的关键.9、D【分析】根据要求画出图形,即可解决问题.【详解】解:根据题意,作出图形,如图:观察图象可知:A2(4,2);故选:D.【点睛】本题考查平移变换,旋转变换等知识,解题的关键是正确画出图象,属于中考常考题型.10、C【分析】根据线段垂直平分线的性质和三角形的周长公式即可得到结论.【详解】∵DE是边AB的垂直平分线,∴AE=BE.∴△BCE的周长=BC+BE+CE=BC+AE+CE=BC+AC=1.又∵BC=8,∴AC=10(cm).故选C.【点睛】此题考查线段垂直平分线的性质,解题关键在于掌握计算公式.二、填空题(每小题3分,共24分)11、【分析】根据只有符号不同的两个数为互为相反数进行解答.【详解】解:根据相反数的定义,可得的相反数是.故答案为:.【点睛】此题主要考查了实数的性质,关键是掌握相反数的定义.12、s,3或s或6s【分析】(1)过P作PE⊥AB于E,根据角平分线的性质可得PE=CP=2t,AE=AC=6,进而求得BE、BP,再根据勾股定理列方程即可解答;(2)根据题意分AC=CP、AC=AP情况进行讨论求解.【详解】(1)在△ABC中,∵∠ACB=90°,AC=6cm,BC=8cm,∴AB=10cm,如图,过P作PE⊥AB于E,∵线段AP是∠CAB的平分线,∠ACB=90°,∴PE=CP=2t,AE=AC=6cm,∴BP=(8-2t)cm,BE=10-6=4cm,在Rt△PEB中,由勾股定理得:,解得:t=,故答案为:s;(2)∵△ACP是以AC为腰的等腰三角形,∴分下列情况讨论,当AC=CP=6时,如图1,t==3s;当AC=CP=6时,如图2,过C作CM⊥AB于M,则AM=PM,CM=,∵AP=10+8-2t=18-2t,∴AM=AP=9-t,在Rt△AMC中,由勾股定理得:,解得:t=s或t=s,∵0﹤2t﹤8+10=18,∴0﹤t﹤9,∴t=s;当AC=AP=6时,如图3,PB=10-6=4,t==6s,故答案为:3s或s或6s.【点睛】本题考查了角平分线的性质、等腰三角形的判定与性质、勾股定理,难度适中,熟练掌握角平分线的性质,利用分类讨论的思想是解答的关键,13、a+1.【解析】试题解析:拼成的长方形的面积=(a+3)2﹣32,=(a+3+3)(a+3﹣3),=a(a+1),∵拼成的长方形一边长为a,∴另一边长是a+1.考点:图形的拼接.14、1;【分析】由对称的性质可得:DE=EM,DF=FN,AM=AD=AN=1,∠MAE=∠DAE,∠NAF=∠DAF,然后根据两点之间线段最短可得此时MN即为△DEF的周长的最小值,然后根据等边三角形的判定定理及定义即可求出结论.【详解】解:过点D分别作AB、AC的对称点M、N,连接MN分别交AB、AC于点E、F,连接DE、DF、AD、AM和AN由对称的性质可得:DE=EM,DF=FN,AM=AD=AN=1,∠MAE=∠DAE,∠NAF=∠DAF∴△DEF的周长=DE+EF+DF=EM+EF+FN=MN,∠MAE+∠NAF=∠DAE+∠DAF=∠BAC=30°∴根据两点之间线段最短,此时MN即为△DEF的周长的最小值,∠MAN=∠MAE+∠NAF+∠BAC=60°∴△MAN为等边三角形∴MN=AM=AN=1即△DEF周长的最小值为1故答案为:1.【点睛】此题考查的是对称的性质、等边三角形的判定及定义和两点之间线段最短的应用,掌握对称的性质、等边三角形的判定及定义和两点之间线段最短是解决此题的关键.15、32【分析】根据底边三角形的性质求出以及平行线的性质得出,以及,得出,,进而得出答案.【详解】解:△是等边三角形,,,,,,又,,,,,△、△是等边三角形,,,,,,,,,,,同理可得:,△的边长为,△的边长为.故答案为:.【点睛】本题考查了等边三角形的性质以及30°直角三角形的性质,根据已知得出,,进而发现规律是解题关键.16、30°【分析】先根据等腰三角形的性质和三角形的内角和定理以及角的和差求出的度数,然后作点D关于直线AB的对称点E,连接BE、CE、AE,如图,则BE=BD,∠EBA=∠DB,∠BEA=∠BDA,进而可得∠EBC=60°,由于BD=BC,从而可证△EBC是等边三角形,可得∠BEC=60°,EB=EC,进一步即可根据SSS证明△AEB≌△AEC,可得∠BEA的度数,问题即得解决.【详解】解:∵,,∴,∵,∴,作点D关于直线AB的对称点E,连接BE、CE、AE,如图,则BE=BD,∠EBA=∠DBA=11°,∠BEA=∠BDA,∴∠EBC=11°+11°+38°=60°,∵BD=BC,∴BE=BC,∴△EBC是等边三角形,∴∠BEC=60°,EB=EC,又∵AB=AC,EA=EA,∴△AEB≌△AEC(SSS),∴∠BEA=∠CEA=,∴∠ADB=30°.【点睛】本题考查了等腰三角形的性质、三角形的内角和定理、等边三角形的判定和性质、全等三角形的判定和性质以及轴对称的性质等知识,涉及的知识点多、综合性强,难度较大,作点D关于直线AB的对称点E,构造等边三角形和全等三角形的模型是解题的关键.17、【分析】分式方程去分母转化为整式方程,由分式方程无解得到x+1=0,求出x的值,代入整式方程求出m的值即可.【详解】去分母得:3x−2=2x+2+m,由分式方程无解,得到x+1=0,即x=−1,代入整式方程得:−5=−2+2+m,解得:m=−5,故答案为-5.【点睛】此题考查分式方程的解,解题关键在于掌握运算法则.18、【解析】根据角平分线的性质可知,由于∠C=90°,故,是等腰直角三角形,由勾股定理可得BD,AC的值.由Rt△ACD和Rt△AED全等,可得AC=AE,进而得出AB的值.【详解】∵AD是△ABC的角平分线,DC⊥AC,DE⊥AB,∴DE=CD=2,

又∵AC=BC,∴∠B=∠BAC,又∵∠C=90°,∠B=∠BDE=45°,∴BE=DE=2.在等腰直角三角形BDE中,由勾股定理得,,∴AC=BC=CD+BD=.在Rt△ACD和Rt△AED中,∴Rt△ACD≌Rt△AED(HL).∴AC=AE=,∴AB=BE+AE=,故答案为..【点睛】本题主要考查了角平分线的性质,等腰直角三角形的性质,比较简单.三、解答题(共66分)19、(1)见解析;(2)C点的坐标为(9,0);(3)的值不变,【分析】(1)由△AOB和△CBD是等边三角形得到条件,判断△OBC≌△ABD,即可证得∠ACB=∠ADB;(2)先判断△AEC的腰和底边的位置,利用角的和差关系可证得∠OEA=,AE和AC是等腰三角形的腰,利用直角三角形中,所对的边是斜边的一半可求得AE的长度,因此OC=OA+AC,即可求得点C的坐标;(3)利用角的和差关系可求出∠OEA=,再根据直角三角形中,所对的边是斜边的一半即可证明.【详解】解:(1)∵△AOB和△CBD是等边三角形∴OB=AB,BC=BD,∠OBA=∠CBD=,∴∠OBA+∠ABC=∠CBD+∠ABC,即∠OBC=∠ABD∴在△OBC与△ABD中,OB=AB,∠OBC=∠ABD,BC=BD∴△OBC≌△ABD(SAS)∴∠OCB=∠ADB即∠ACB=∠ADB(2)∵△OBC≌△ABD∴∠BOC=∠BAD=又∵∠OAB=∴∠OAE==,∴∠EAC=,∠OEA=,∴在以A,E,C为顶点的等腰三角形中AE和AC是腰.∵在Rt△AOE中,OA=3,∠OEA=∴AE=6∴AC=AE=6∴OC=3+6=9∴以A,E,C为顶点的三角形是等腰三角形时,C点的坐标为(9,0)(3)的值不变.理由:由(2)得∠OAE=-∠OAB-∠BAD=∴∠OEA=∴在Rt△AOE中,EA=2OA∴=.【点睛】本题主要考查了全等三角形的性质以及判定定理,平面直角坐标系,含角直角三角形的性质,等腰三角形的性质,等边三角形的性质,灵活运用全等三角形的判定定理寻求全等三角形的判定条件证明三角形全等是解题的关键.20、(1)证明见解析;(2)∠ABE=40°.【分析】(1)由四边形ABCD是平行四边形,点E为AD的中点,易证得△DEC≌△AEF(AAS),继而可证得DC=AF,又由DC=AB,证得结论;(2)由(1)可知BF=2AB,EF=EC,然后由∠BCD=100°求得BE平分∠CBF,继而求得答案.【详解】证明:(1)∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∴∠DCE=∠F,∠FBC+∠BCD=180°,∵E为AD的中点,∴DE=AE.在△DEC和△AEF中,,∴△DEC≌△AEF(AAS).∴DC=AF.∴AB=AF;(2)由(1)可知BF=2AB,EF=EC,∵∠BCD=100°,∴∠FBC=180°﹣100°=80°,∵BC=2AB,∴BF=BC,∴BE平分∠CBF,∴∠ABE=∠FBC=×80°=40°【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质以及等腰三角形的性质,证得△DEC≌△AEF和△BCF是等腰三角形是关键.21、(1)C(4,0);(2);(3).【分析】(1)根据对称的性质知为等边三角形,利用直角三角形中30度角的性质即可求得答案;(2)利用面积法可求得,再利用坐标系中点的特征即可求得答案;(3)利用(2)的结论求得,利用角平分线的性质证得,求得,利用面积法求得,再利用直角三角形中30度角的性质即可求得答案.【详解】(1)∵点、关于轴对称,∴,∴,∵,∴为等边三角形,∴,∴,∴点C的坐标为:;(2)连接,∵,∴,∵,∴,∵,∴,∵,∴,即:;(3)∵点到的距离为,∴,∴,∴,延长交于点,过点作轴于点,连接、,∵为的角平分线,为等边三角形,∴,,∵,,∴,∴,设,在中,,∴,∵,∴,∴,∴,∴,∵,,∴,∵,∴,在中,,,∴,∴,,∴,∴.【点睛】本题是三角形综合题,涉及的知识有:含30度直角三角形的性质,全等三角形的判定与性质,外角性质,角平分线的性质,等边三角形的判定和性质,坐标与图形性质,熟练掌握性质及定理、灵活运用面积法求线段的长是解本题的关键.22、(1)CD=4,AD=16;(2)当t=3.6或10秒时,是直角三角形,理由见解析;(3)当t=7.2秒时,,理由见解析【分析】(1)根据CD=速度×时间列式计算即可得解,利用勾股定理列式求出AC,再根据AD=AC-CD代入数据进行计算即可得解;

(2)分①∠CDB=90°时,利用△ABC的面积列式计算即可求出BD,然后利用勾股定理列式求解得到CD,再根据时间=路程÷速度计算;②∠CBD=90°时,点D和点A重合,然后根据时间=路程÷速度计算即可得解;

(3)过点B作BF⊥AC于F,根据等腰三角形三线合一的性质可得CD=2CF,再由(2)的结论解答.【详解】解:(1)t=2时,CD=2×2=4,

∵∠ABC=90°,AB=16,BC=12,∴AD=AC-CD=20-4=16;(2)①∠CDB=90°时,∴解得BD=9.6,∴t=7.2÷2=3.6秒;

②∠CBD=90°时,点D和点A重合,

t=20÷2=10秒,

综上所述,当t=3.6或10秒时,是直角三角形;

(3)如图,过点B作BF⊥AC于F,

由(2)①得:CF=7.2,

∵BD=BC,∴CD=2CF=7.2×2=14.4,

∴t=14.4÷2=7.2,

∴当t=7.2秒时,,【点睛】本题考查了勾股定理,等腰三角形的判定与性质,三角形的面积,熟练掌握相关的知识是解题的关键23、(1);(2),【分析】(1)先将乘方进行计算,在根据分式的乘除运算法则依次进行计算即可;(2)先根据分式的混合运算顺序和法则将式子进行化简,再考虑到分式的分母不可为零,代入x=1得到最后的值.【详解】(1)故本题最后化简为.(2)因为分式的分母不可为零,所以x不能取-1,-2,即x只能取1,将x=1带入化简后的式子有故本题化简后的式子为,最后的值为.【点睛】(1)本题考查了分式的乘方以及分式的乘除,熟练掌握分式乘除法的运算法则是解题的关键;(2)本题考查了分式的化简求值;分式的混合运算需要特别注意运算顺序以及符号的处理,其中在代值时要格外注意分式的分母不可为零,取合适的数字代入.24、(1)45,;(2)4;(3),见解析【分析】(1)根据折叠的性质可得DG=DA=DC,根据HL证明△DAF≌△DGF,得到AF=GF,,故可求解;(2)延长到,使,连接,证明,再得到△AEC为等腰直角三角形,根据四边形的面积与的面积相等,即可利用等腰直角三角形求出AC的长;(3)将绕点逆时针旋转90°得到,连接,可证明.得到,可求得,得到,由即可证明.【详解】解:(1)∵将沿折叠得到△GDE,根据折叠的性质可得DG=DA=DC,∵,DF=DF,∴Rt△DAF≌R

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论