版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届贵州省威宁县数学八年级第一学期期末经典模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.练习中,小亮同学做了如下4道因式分解题,你认为小亮做得正确的有①②③④A.1个 B.2个 C.3个 D.4个2.下列给出的四组线段中,可以构成直角三角形的是()A.4,5,6 B. C.2,3,4 D.12,9,153.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.-=20 B.-=20 C.-= D.=4.下列长度的三条线段能组成三角形的是()A.3,4,8 B.2,5,3 C.,,5 D.5,5,105.如图,点在一条直线上,,那么添加下列一个条件后,仍不能够判定的是()A. B. C. D.6.下列图案中是中心对称图形但不是轴对称图形的是()A. B.C. D.7.如果等腰三角形两边长为和,那么它的周长是().A. B. C.或 D.8.小王家距上班地点18千米,他用乘公交车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程的2倍还多9千米.他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的.小王用自驾车方式上班平均每小时行驶()A.26千米 B.27千米 C.28千米 D.30千米9.如图,坐标平面上有P,Q两点,其坐标分别为(5,a),(b,7),根据图中P,Q两点的位置,则点(6-b,a-10)在()A.第一象限 B.第二象限C.第三象限 D.第四象限10.小明的妈妈在菜市场买回2斤萝卜、1斤排骨共花了41.4元,而两个月前买同重量的这两样菜只要36元,与两个月前相比,这次萝卜的单价下降了10%,但排骨单价却上涨了20%,设两个月前买的萝卜和排骨的单价分别为x元/斤,y元/斤,则可列方程为()A. B.C. D.11.如图,△ABC中,∠C=90°,∠A=30°,AB=12,则BC=()A.6 B.6 C.6 D.1212..已知两条线段长分别为3,4,那么能与它们组成直角三角形的第三条线段长是()A.5 B.C.5或 D.不能确定二、填空题(每题4分,共24分)13.分式的值为0,则__________.14.分解因式:a3-a=15.如图,边长为的菱形中,.连结对角线,以为边作第二个菱形,使.连结,再以为边作第三个菱形,使,一按此规律所作的第个菱形的边长是__________.16.若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是______.17.因式分解:-2x2+2=___________.18.在平面直角坐标系中,的顶点B在原点O,直角边BC,在x轴的正半轴上,,点A的坐标为,点D是BC上一个动点(不与B,C重合),过点D作交AB边于点E,将沿直线DE翻折,点B落在x轴上的F处.(1)的度数是_____________;(2)当为直角三角形时,点E的坐标是________________.三、解答题(共78分)19.(8分)观察下列等式:22﹣2×1=12+1①32﹣2×2=22+1②42﹣2×3=32+1③…(1)第④个等式为;(2)根据上面等式的规律,猜想第n个等式(用含n的式子表示,n是正整数),并说明你猜想的等式正确性.20.(8分)今年,长沙开始推广垃圾分类,分类垃圾桶成为我们生活中的必备工具.某学校开学初购进型和型两种分类垃圾桶,购买型垃圾桶花费了2500元,购买型垃圾桶花费了2000元,且购买型垃圾桶数量是购买型垃圾桶数量的2倍,已知购买一个型垃圾桶比购买一个型垃圾桶多花30元.(1)求购买一个型垃圾桶、B型垃圾桶各需多少元?(2)由于实际需要,学校决定再次购买分类垃圾桶,已知此次购进型和型两种分类垃圾桶的数量一共为50个,恰逢市场对这两种垃圾桶的售价进行调整,型垃圾桶售价比第一次购买时提高了8%,型垃圾桶按第一次购买时售价的9折出售,如果此次购买型和型这两种垃圾桶的总费用不超过3240元,那么此次最多可购买多少个型垃圾桶?21.(8分)在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1,3)点B坐标为(2,1);(2)请作出△ABC关于y轴对称的△A'B'C',并写出点C'的坐标;(3)判断△ABC的形状.并说明理由.22.(10分)解不等式组:,并把它的解集在数轴上表示出来.23.(10分)如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(2,0),C(4,4)均在正方形网格的格点上.(1)画出△ABC关于x轴对称的图形△A1B1C1并写出顶点A1,B1,C1的坐标;(2)已知P为y轴上一点,若△ABP与△ABC的面积相等,请直接写出点P的坐标.24.(10分)如图,在中,对角线,交于点,是上任意一点,连接并延长,交于点,连接,.(1)求证:四边形是平行四边形;(2)若,,.求出的边上的高的值.25.(12分)如图,△ABC为等腰三角形,AC=BC,△BDC和△CAE分别为等边三角形,AE与BD相交于点F,连接CF并延长,交AB于点G.求证:∠ACG=∠BCG.26.如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=5,求△ADE的周长.(2)若∠BAD+∠CAE=60°,求∠BAC的度数.
参考答案一、选择题(每题4分,共48分)1、B【解析】试题解析:①x3+x=x(x2+1),不符合题意;②x2-2xy+y2=(x-y)2,符合题意;③a2-a+1不能分解,不符合题意;④x2-16y2=(x+4y)(x-4y),符合题意,故选B2、D【分析】根据勾股定理判断这四组线段是否可以构成直角三角形.【详解】A.,错误;B.当n为特定值时才成立,错误;C.,错误;D.,正确;故答案为:D.【点睛】本题考查了直角三角形的性质以及判定,利用勾股定理判断是否可以构成直角三角形是解题的关键.3、C【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.【详解】由题意可得,
-=,
故选:C.【点睛】此题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.4、C【解析】选项A,3+4<8,根据三角形的三边关系可知,不能够组成三角形;选项B,2+3=5,根据三角形的三边关系可知,不能够组成三角形;选项C,+>5,根据三角形的三边关系可知,能够组成三角形;选项D,5+5=10,根据三角形的三边关系可知,不能够组成三角形;故选C.5、D【分析】根据题意可知两组对应边相等,所以若要证明全等只需证明第三边也相等或证明两边的夹角相等或证明一边的对角是90°利用HL定理证明全等即可.【详解】解:,∴,又∵,当,可得∠B=∠E,利用SAS可证明全等,故A选项不符合题意;当,利用SSS可证明全等,故B选项不符合题意;当,利用HL定理证明全等,故C选项不符合题意;当,可得∠ACB=∠DFC,SSA无法证明全等,故D选项符合题意.故选:D.【点睛】本题主要考查了全等三角形的判定,全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件.6、C【分析】根据轴对称图形与中心对称图形的定义求解.【详解】解:A、是中心对称图形,也是轴对称图形,不符合题意;B、不是中心对称图形,是轴对称图形,不符合题意;C、是中心对称图形,不是轴对称图形,符合题意;D、不是轴对称图形,也不是中心对称图形,不符合题意.故选C.【点睛】本题考查了轴对称图形与中心对称图形的定义,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.7、B【分析】分两种情况:①底为3cm,腰为7cm时,②底为7cm,腰为3cm时;还要应用三角形的三边关系验证能否组成三角形.【详解】分两种情况:
①底为3cm,腰为7cm时,∵,
∴等腰三角形的周长(cm);
②底为7cm,腰为3cm时,
∵,
∴不能构成三角形;
综上,等腰三角形的周长为17cm;
故选:B.【点睛】本题考查了等腰三角形的性质、三角形的三边关系定理;解此类题注意分情况讨论,还要看是否符合三角形的三边关系.8、B【分析】设小王用自驾车方式上班平均每小时行驶x千米,根据已知小王家距上班地点18千米.他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的,可列方程求解.【详解】∵小王家距上班地点18千米,设小王用自驾车方式上班平均每小时行驶x千米,∴小王从家到上班地点所需时间t=小时;∵他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,∴他乘公交车从家到上班地点所需时间t=,∵乘公交车方式所用时间是自驾车方式所用时间的,∴=×,解得x=27,经检验x=27是原方程的解,且符合题意.即:小王用自驾车方式上班平均每小时行驶27千米.故答案选:B.【点睛】本题考查了分式方程的应用,解题的关键是熟练的掌握分式方程的应用.9、D【解析】∵(5,a)、(b,7),
∴a<7,b<5,
∴6-b>0,a-10<0,
∴点(6-b,a-10)在第四象限.
故选D.10、A【分析】根据题目中设的两个月前的萝卜和排骨的单价,先列出两个月前的式子,再根据降价和涨价列出现在的式子,得到方程组.【详解】解:两个月前买菜的情况列式:,现在萝卜的价格下降了10%,就是,排骨的价格上涨了20%,就是,那么这次买菜的情况列式:,∴方程组可以列为.故选:A.【点睛】本题考查二元一次方程组的应用,解题的关键是根据题意找到等量关系列出方程组.11、A【详解】∵30°的角所对的直角边等于斜边的一半,,故选A.12、C【解析】由于“两边长分别为3和4,要使这个三角形是直角三角形”指代不明,因此,要讨论第三边是直角边和斜边的情形.【详解】当第三条线段为直角边,4为斜边时,根据勾股定理得第三边长为;当第三条线段为斜边时,根据勾股定理得第三边长为,故选C..【点睛】此题主要考查了勾股定理的应用,关键是要分类讨论,不要漏解.二、填空题(每题4分,共24分)13、1【分析】分式为0,则分子为0,且分母不为0,列写关于m的方程求得.【详解】∵分式的值为0∴=0,且m+1≠0解得:m=1故答案为:1【点睛】本题考查分式为0的情况,需要注意,在求解过程中,必须还要考虑分母不为0.14、【解析】a3-a=a(a2-1)=15、1.【解析】连接DB于AC相交于M,根据已知和菱形的性质可分别求得AC,AE,AG的长,从而可发现规律根据规律不难求得第n个菱形的边长.【详解】连接DB交AC于M.∵四边形ABCD是菱形,∴AD=AB.AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=1,∴BM=,∴AM=,∴AC=,同理可得AE=AC=()2,AG=AE=()3,按此规律所作的第n个菱形的边长为()n-1,∴第2017个菱形的边长是()2016=1.故答案为:1.【点睛】此题主要考查菱形的性质、等边三角形的判定和性质以及学生探索规律的能力.16、2【解析】试题分析:依题意得,2a-1+(-a+2)=0,解得:a=-1.则这个数是(2a-1)2=(-3)2=2.故答案为2.点睛:本题考查了平方根的性质.根据正数有两个平方根,它们互为相反数建立关于a的方程是解决此题的关键.17、-2(x+1)(x-1)【分析】首先提公因式-2,再利用平方差进行二次分解.【详解】原式=-2(x2-1)=-2(x+1)(x-1),故答案为:-2(x+1)(x-1).【点睛】此题主要考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,掌握分解方法是解题关键.18、30°(1,)或(2,)【分析】(1)根据∠ACB=90°以及点A的坐标,得到AC和BC的长,再利用特殊角的三角函数值求解即可;(2)根据直角三角形的定义可分三种情况考虑:①当∠AEF=90°时,②当∠AEF=90°时,③当∠EAF=90°时,三种情况分别求解.【详解】解:(1)∵∠ACB=90°,点A的坐标为,∴AC=,BC=3,∴tan∠ABC==,∴∠ABC=30°,故答案为:30°;(2)△AEF为直角三角形分三种情况:①当∠AEF=90°时,
∵∠OED=∠FED,且∠OED+∠FED+∠AEF=180°,
∴∠OED=45°.
∵∠ACB=90°,点A的坐标为,∴tan∠ABC=,∠ABC=30°.
∵ED⊥x轴,
∴∠OED=90°-∠ABC=60°.
45°≠60°,此种情况不可能出现;②当∠AFE=90°时,
∵∠OED=∠FED=60°,
∴∠AEF=60°,
∵∠AFE=90°,
∴∠EAF=90°-∠AEF=30°.
∵∠BAC=90°-∠ABC=60°,
∴∠FAC=∠BAC-∠EAF=60°-30°=30°.
∵AC=,∴CF=AC•tan∠FAC=1,
∴OF=OC-FC=3-1=2,∴OD=1,∴DE=tan∠ABC×OD=,∴点E的坐标为(1,);③当∠EAF=90°时,
∵∠BAC=60°,
∴∠CAF=∠EAF-∠EAC=90°-60°=30°,
∵AC=,∴CF=AC•tan∠FAC=1,
∴OF=OC+CF=3+1=4,∴OD=2,∴DE=tan∠ABC×OD=,∴点E的坐标为(2,);综上知:若△AEF为直角三角形.点E的坐标为(1,)或(2,).故答案为:(1,)或(2,).【点睛】本题考查了一次函数图象与几何变换、角的计算以及解直角三角形,解题的关键是根据角的计算以及解直角三角形找出CF的长度.本题属于中档题,难度不大,但在解决该类题型时,部分同学往往会落掉2种情况,因此在平常教学中应多加对学生引导,培养他们考虑问题的全面性.三、解答题(共78分)19、(1)52﹣2×4=42+1;(2)(n+1)2﹣2n=n2+1,证明详见解析.【解析】(1)根据①②③的规律即可得出第④个等式;(2)第n个等式为(n+1)2﹣2n=n2+1,把等式左边的完全平方公式展开后再合并同类项即可得出右边.【详解】(1)∵22﹣2×1=12+1①32﹣2×2=22+1②42﹣2×3=32+1③∴第④个等式为52﹣2×4=42+1,故答案为:52﹣2×4=42+1,(2)第n个等式为(n+1)2﹣2n=n2+1.(n+1)2﹣2n=n2+2n+1﹣2n=n2+1.【点睛】本题主要考查了整式的运算,熟练掌握完全平方公式是解答本题的关键.20、(1)购买一个型垃圾桶、型垃圾桶分别需要50元和80元;(2)此次最多可购买1个型垃圾桶.【分析】(1)设一个A型垃圾桶需x元,则一个B型垃圾桶需(x+1)元,根据购买A型垃圾桶数量是购买B品牌足球数量的2倍列出方程解答即可;
(2)设此次可购买a个B型垃圾桶,则购进A型垃圾桶(50-a)个,根据购买A、B两种垃圾桶的总费用不超过3240元,列出不等式解决问题.【详解】(1)设购买一个型垃圾桶需元,则购买一个型垃圾桶需元.由题意得:.解得:.经检验是原分式方程的解.∴.答:购买一个型垃圾桶、型垃圾桶分别需要50元和80元.(2)设此次购买个型垃圾桶,则购进型垃圾桶个,由题意得:.解得.∵是整数,∴最大为1.答:此次最多可购买1个型垃圾桶.【点睛】本题考查一元一次不等式与分式方程的应用,正确找出等量关系与不等关系是解决问题的关键.21、(1)如图见解析;(2)如图见解析,C'的坐标为(﹣5,5);(3)△ABC是直角三角形.【解析】试题分析:(1)根据两点的坐标建立平面直角坐标系即可;
(2)作出各点关于轴的对称点,顺次连接即可;
(3)根据勾股定理的逆定理判断出的形状即可.试题解析:(1)如图所示:(2)如图所示:即为所求:C'的坐标为(3)∴∴是直角三角形.点睛:一个三角形两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形.22、,数轴图见解析.【分析】先分别求出不等式①和②的解,再找出两个解的公共部分即可得出不等式组的解集,然后根据数轴的定义将其表示出来即可.【详解】不等式①,移项合并得:不等式②,去括号得:移项合并得:故原不等式组的解集是,将其在数轴上表示出来如下:【点睛】本题考查了一元一次不等式组的解法、数轴的定义,掌握不等式组的解法是解题关键.23、(1)见解析,A1(0,-1),B1(2,0),C1(4,-4);(2)(0,6)或(0,-4).【分析】(1)根据关于x轴对称的点的坐标特征写出顶点A1,B1,C1的坐标,描点即可;(2)利用割补法求得△ABC的面积,设点P的坐标为,则,求解即可.【详解】解:(1)作出△ABC关于x轴对称的△A1B1C1如图所示.△A1B1C1顶点坐标为:A1(0,-1),B1(2,0),C1(4,-4).(2),设点P的坐标为,则,解得或6,∴点P的坐标为(0,6)或(0,-4).【点睛】本题考查轴对称变换、割补法求面积,掌握关于x轴对称的点的坐标特征是解题的关键.24、(1)详见解析;(2)【分析】(1)根据平行四边形性质得BO=DO,AO=CO,AD∥BC,构造条件证△AOE≌△COF(ASA),证CF=AE,CF∥AE,即可;(2)作AH⊥BC,根据直角三角形性质得CH=,再运用勾股定理可得.【详解】证明:(1)∵在▱ABCD中,AC,BD交于点O,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年全球电商供应链管理合同
- 2024年商业地产抵押借款协议
- 2024年专业派遣协议正本
- 2024年专用车辆吊装与运输合同样本
- 2024年城市景观照明维护服务合同
- 2024年基站租赁合同
- 2024年城市更新工程施工合同
- 2024年个人借条范例:借款合同样本
- 2024年地区分销权协议
- 2024年全新版股权转让合同
- 3.1列代数式表示数量关系(第2课时 列代数式) 课件 2024-2025学年七年级数学上册 (人教版2024)
- 土壤污染重点监管单位隐患排查技术指南第4部分:医药制造业
- 变压器二手买卖合同范本2024年
- 2024年全国高考Ⅰ卷英语试题及答案
- 个人不再信访承诺书
- 2024年山西航空产业集团限公司校园招聘(高频重点提升专题训练)共500题附带答案详解
- NB-T 10436-2020 电动汽车快速更换电池箱冷却接口通.用技术要求
- 毓璜顶医院出院记录
- 人教版高中地理选择性必修1第一章地球的运动单元检测含答案
- xf124-2013正压式消防空气呼吸器标准
- 湖北省2024年中考英语真题【附真题答案】
评论
0/150
提交评论