2025届江苏省连云港灌云县联考数学八上期末达标测试试题含解析_第1页
2025届江苏省连云港灌云县联考数学八上期末达标测试试题含解析_第2页
2025届江苏省连云港灌云县联考数学八上期末达标测试试题含解析_第3页
2025届江苏省连云港灌云县联考数学八上期末达标测试试题含解析_第4页
2025届江苏省连云港灌云县联考数学八上期末达标测试试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏省连云港灌云县联考数学八上期末达标测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,在平面直角坐标系中,直线l1的解析式为y=﹣x,直线l2与l1交于B(a,﹣a),与y轴交于点A(0,b).其中a、b满足(a+2)2+=0,那么,下列说法:(1)B点坐标是(﹣2,2);(2)三角形ABO的面积是3;(3);(4)当P的坐标是(﹣2,5)时,那么,,正确的个数是()A.1个 B.2个 C.3个 D.4个2.一辆货车从甲地匀速驶往乙地用了2.7h,到达后用了0.5h卸货,随即匀速返回,已知货车返回的速度是它从甲地驶往乙地速度的1.5倍,货车离甲地的距离y(km)关于时间x(h)的函数图象如图所示,则a等于()A.4.7 B.5.0 C.5.4 D.5.83.如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E,已知PE=3,则点P到AB的距离是()A.3 B.4 C.5 D.64.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=40°,则∠2=()A.40° B.50° C.60° D.70°5.如图,点A,D,C,F在一条直线上,AB=DE,∠A=∠EDF,下列条件不能判定△ABC≌△DEF的是()A.AD=CF B.∠BCA=∠F C.∠B=∠E D.BC=EF6.下列式子:①;②;③;④.其中计算正确的有()A.1个 B.2个 C.3个 D.4个7.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为()A. B. C. D.不能确定8.一个三角形的三边长2、3、4,则此三角形最大边上的高为()A. B. C. D.9.如图,点A,D,C,F在一条直线上,AB=DE,∠A=∠EDF,补充下列条件不能证明△ABC≌△DEF的是()A.AD=CF B.BC∥EF C.∠B=∠E D.BC=EF10.如果关于的分式方程无解,那么的值为()A.4 B. C.2 D.二、填空题(每小题3分,共24分)11.如图,在中,,,分别为边,上一点,.将沿折叠,使点与重合,折痕交边于点.若为等腰三角形,则的度数为_____度.12.若x2-mx+36是一个完全平方式,则m=____________________.13.0.000608用科学记数法表示为.14.若,,,则,,的大小关系用"连接为________.15.如果表示a、b的实数的点在数轴上的位置如图所示,那么化简|a﹣b|+的结果是_____.16.点M(3,﹣1)到x轴距离是_____.17.a,b,c为ΔABC的三边,化简|a-b-c|-|a+b-c|+2a结果是____.18.如图,直线a∥b,∠BAC的顶点A在直线a上,且∠BAC=98°,若∠1=35°,则∠2=_____度.三、解答题(共66分)19.(10分)如图,在ABC中,∠C=90°,AC=BC.AD平分∠CAB交BC于点D.DEAB于点E,且AB=6cm.求ΔBDE的周长.20.(6分)用配方法解方程:.21.(6分)如图,等腰△ABC,点D、E、F分别在BC、AB、AC上,且∠BAC=∠ADE=∠ADF=60°.(1)在图中找出与∠DAC相等的角,并加以证明;(2)若AB=6,BE=m,求:AF(用含m的式子表示).22.(8分)如图,在平面直角坐标系中,一次函数的图象过点A(4,1)与正比例函数()的图象相交于点B(,3),与轴相交于点C.(1)求一次函数和正比例函数的表达式;(2)若点D是点C关于轴的对称点,且过点D的直线DE∥AC交BO于E,求点E的坐标;(3)在坐标轴上是否存在一点,使.若存在请求出点的坐标,若不存在请说明理由.23.(8分)如图,在平面直角坐标系中,A(-3,3),B(-4,-2),C(-1,-1).(1)在图中作出△ABC关于y轴对称的△A'B'C',并写出点C'的坐标________;(2)在y轴上画出点P,使PA+PC最小,并直接写出P点坐标.24.(8分)如图,在等边中,点(2,0),点是原点,点是轴正半轴上的动点,以为边向左侧作等边,当时,求的长.25.(10分)如图1,点P、Q分别是边长为4cm的等边三角形ABC的边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s.(1)连接AQ、CP交于点M,则在P,Q运动的过程中,证明≌;(2)会发生变化吗?若变化,则说明理由,若不变,则求出它的度数;(3)P、Q运动几秒时,是直角三角形?(4)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则变化吗?若变化说明理由,若不变,则求出它的度数。26.(10分)某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据查结果,把学生的安全意识分成淡薄、一般、较强、很强四个层次,并绘制成如下两幅尚不完整的统计图:根据以上信息,解答下列问题:(1)该校有1200名学生,现要对安全意识为淡薄、一般的学生强化安全教育,根据调查结果,估计全校需要强化安全教育的学生约有多少名?(2)请将条形统计图补充完整.(3)求出安全意识为“较强”的学生所占的百分比.

参考答案一、选择题(每小题3分,共30分)1、D【分析】(1)根据非负数的性质即可求得a的值,即可得到B(﹣2,2);(2)利用三角形面积公式求得即可判断;(3)求得△OBC和△AOB的面积即可判断;(4)S△BCP和S△AOB的值即可判断.【详解】解:(1)∵a、b满足(a+2)2+=0,∴a+2=0,b﹣3=0,∴a=﹣2,b=3,∴点A的坐标为(0,3),点B的坐标为(﹣2,2),故(1)正确;(2)三角形ABO的面积=×OA×=×3×2=3,故(2)正确;(3)设直线l2的解析式为y=kx+c(k≠0),将A、B的坐标代入y=kx+c,得:,解得:,∴直线l2的解析式为y=x+3,令y=0,则x=﹣6,∴C(﹣6,0),∴S△OBC==6,∵S△ABO=3,∴S△OBC:S△AOB=2:1;故(3)正确;(4)∵P的坐标是(﹣2,5),B(﹣2,2),∴PB=5﹣2=3,∴S△BCP==6,S△AOB=×3×2=6,∴S△BCP=S△AOB.故(4)正确;故选:D.【点睛】本题考查了两条直线相交问题,三角形的面积,一次函数图象上点的坐标特征,求得交点坐标是解题的关键.2、B【分析】先根据路程、速度和时间的关系题意可得甲地到乙地的速度和从乙地到甲地的时间,再由货车返回的速度是它从甲地驶往乙地的速度的1.5倍,列出方程组求得从乙地到甲地的时间t,进而求得a的值.【详解】解:设甲乙两地的路程为s,从甲地到乙地的速度为v,从乙地到甲地的时间为t,则解得,t=1.8∴a=3.2+1.8=5(小时),故选B.【点睛】本题考查了一次函数的图像的应用、方程组的应用,根据一次函数图像以及路程、速度和时间的关系列出方程组是解答本题的关键.3、A【解析】角平分线上的点到角的两边的距离相等,故点P到AB的距离是3,故选A4、B【分析】根据两直线平行,同位角相等可得∠3=∠1,再根据平角等于180°列式计算即可得解.【详解】解:∵直尺对边互相平行,∴∠3=∠1=40°,∴∠2=180°−40°−90°=50°.故选:B.【点睛】本题考查了平行线的性质,平角的定义,熟记性质并准确识图是解题的关键.5、D【解析】根据全等三角形的判定方法分别进行分析即可.【详解】AD=CF,可用SAS证明△ABC≌△DEF,故A选项不符合题意,∠BCA=∠F,可用AAS证明△ABC≌△DEF,故B选项不符合题意,∠B=∠E,可用ASA证明△ABC≌△DEF,故C选项不符合题意,BC=EF,不能证明△ABC≌△DEF,故D选项符合题意,故选D.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.但是AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6、C【解析】试题解析:①错误,②正确,③正确,④正确.正确的有3个.故选C.点睛:同底数幂相乘,底数不变,指数相加.7、B【分析】过P作PF∥BC交AC于F,得出等边三角形APF,推出AP=PF=QC,根据等腰三角形性质求出EF=AE,证△PFD≌△QCD,推出FD=CD,推出DE=AC即可.【详解】过P作PF∥BC交AC于F.如图所示:∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.∵在△PFD和△QCD中,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=1,∴DE=.故选B.8、C【分析】根据题意画出图形,最长边BC上的高将BC分为BD和DC两部分,设BD=x,则DC=4-x,根据Rt△ABD和Rt△ADC有公共边AD,利用勾股定理构建方程,解之即可求得BD的长度,从而可求得AD的长度.【详解】解:如下图,AB=2,AC=3,BC=4,AD为边BC上的高,设BD=x,则DC=4-x,在Rt△ABD和Rt△ADC中根据勾股定理,,即,解得,,所以.故选:C.【点睛】本题考查利用勾股定理解直角三角形.一般已知三角形的三边,求最长边上的高,先判断该三角形是不是直角三角形,如果是直接利用等面积法即可求得;如果不是直角三角形,那么我们可借助高把原三角形分成两个有公共边(公共边即为高)的直角三角形,借助勾股定理构建方程即可解决.需注意的是设未知数的时候不能直接设高,这样构建的方程现在暂时无法求解.9、D【分析】利用全等三角形的判定方法即可判断.【详解】解:∵AB=DE,∠A=∠EDF,∴只要AC=DF即可判断△ABC≌△DEF,∵当AD=CF时,可得AD+DC=DC+CF,即AC=DF,当BC∥EF时,∠ACB=∠F,可以判断△ABC≌△DEF,当∠B=∠E时,可以判断△ABC≌△DEF,故选:D.【点睛】本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.10、B【分析】先解方程,去分母,移项合并得x=-2-m,利用分式方程无解得出x=2,构造m的方程,求之即可.【详解】解关于的分式方程,去分母得m+2x=x-2,移项得x=-2-m,分式方程无解,x=2,即-2-m=2,m=-4,故选择:B.【点睛】本题考查分式方程无解问题,掌握分式方程的解法,会处理无解的问题,一是未知数系数有字母,让系数为0,一是分式方程由增根.二、填空题(每小题3分,共24分)11、1【分析】设的度数为x,的度数为y,根据题意列出二元一次方程组即可求解.【详解】设的度数为x,的度数为y,∵,∴x+y=①∵折叠,∴∵为等腰三角形,∴∵∴∵∴②根据①②求出x=1故答案为:1.【点睛】此题主要考查三角形的角度求解,解题的关键是熟知等腰三角形与折叠的性质.12、±12【解析】试题解析:∵x2+mx+36是一个完全平方式,∴m=±12.故答案为:±12.13、6.08×10﹣1【解析】试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.000608用科学记数法表示为6.08×10﹣1,故答案为6.08×10﹣1.考点:科学记数法—表示较小的数.14、【分析】根据零指数幂得出a的值,根据平方差公式运算得出b的值,根据积的乘方的逆应用得出c的值,再比较大小即可.【详解】解:∵,,∴.故答案为:.【点睛】本题考查了零指数幂,平方差公式的简便运算,积的乘方的逆应用,解题的关键是根据上述运算法则计算出a,b,c的值.15、﹣2b【解析】由题意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣b|+=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案为﹣2b.点睛:本题主要考查了二次根式和绝对值的性质与化简.特别因为a.b都是数轴上的实数,注意符号的变换.16、1【分析】点到x轴的距离是该点纵坐标的绝对值,根据点坐标即可得到答案.【详解】解:M(3,﹣1)到x轴距离是1.故答案为:1.【点睛】此题考查点到坐标轴的距离,正确理解距离与点坐标的关系是解题的关键.17、2c【分析】根据三角形三边关系,确定a-b-c,a+b-c的正负,然后去绝对值,最后化简即可.【详解】解:∵a,b,c为ΔABC的三边∴a-b-c=a-(b+c)<0,a+b-c=(a+b)-c>0∴|a-b-c|-|a+b-c|+2a=-(a-b-c)-(a+b-c)+2a=b+c-a-a-b+c+2a=2c【点睛】本题考查了三角形三边关系的应用,解答的关键在于应用三角形的三边关系判定a-b-c,a+b-c的正负.18、1.【分析】由直线a∥b,利用“两直线平行,内错角相等”可得出∠3的度数,结合∠2+∠3+∠BAC=180°及∠BAC=98°,即可求出∠2的度数.【详解】解:如图,∵直线a∥b,∴∠3=∠1=35°,∵∠2+∠3+∠BAC=180°,∠BAC=98°,∴∠2=180°﹣∠3﹣∠BAC=180°﹣35°﹣98°=1°,故答案为:1.【点睛】本题考查了平行线的性质,牢记“两直线平行,内错角相等”是解题的关键.三、解答题(共66分)19、6cm【分析】本题易证Rt△ADC≌Rt△ADE,得到AC=AE=BC,DE=CD,则△BDE的周长=DE+DB+EB=BC+EB=AE+EB=AB.【详解】解:根据题意能求出△BDE的周长.

∵∠C=90°,∠DEA=90°,

又∵AD平分∠CAB,

∴DE=DC.

在Rt△ADC和Rt△ADE中,DE=DC,AD=AD,

∴Rt△ADC≌Rt△ADE(HL).

∴AC=AE,

又∵AC=BC,

∴AE=BC.

∴△BDE的周长=DE+DB+EB=BC+EB=AE+EB=AB.

∵AB=6cm,

∴△BDE的周长=6cm.【点睛】本题主要考查了全等三角形的性质,对应边相等,正确证明Rt△ADC≌Rt△ADE是解题关键.20、或【分析】根据配方法的步骤先两边都除以2,再移项,再配方,最后开方即可得出答案.【详解】原方程变形为:配方得即或所以原方程得解为或【点睛】本题考查了配方法解一元二次方程,关键是能正确配方,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.21、(1)∠BDE=∠DAC,证明见解析;(2)AF=6﹣m.【分析】(1)首先证明△ABC是等边三角形,再利用三角形的外角的性质解决问题即可.(2)在DE上截取DG=DF,连接AG,先判定△ADG≌△ADF,得到AG=AF,再根据∠AEG=∠AGE,得出AE=AG,进而得到AE=AF即可解决问题.【详解】解:(1)结论:∠BDE=∠DAC.理由:∵AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴∠C=60°.∵∠ADB=∠3+∠ADE=∠1+∠C,∠ADE=∠C=60°,∴∠3=∠1.(2)如图,在DE上截取DG=DF,连接AG.∵△ABC是等边三角形,∴∠B=∠C=60°.∵∠ADE=∠ADF=60°,AD=AD,∴△ADG≌△ADF(SAS),∴AG=AF,∠1=∠2.∵∠3=∠1,∴∠3=∠2∵∠AEG=60°+∠3,∠AGE=60°+∠2,∴∠AEG=∠AGE,∴AE=AG,∴AE=AF=6﹣m.【点睛】本题考查了等边三角形的性质与判断,全等三角形的判定与性质的运用,解决问题的关键是作辅助线构造全等三角形,运用全等三角形的对应边相等,对应角相等得出结论.22、(1)一次函数表达式为:;正比例函数的表达式为:;(2)E(-2,-3);(3)P点坐标为(,0)或(,0)或(0,2)或(0,-2).【分析】(1)将点A坐标代入可求出一次函数解析式,然后可求点B坐标,将点B坐标代入即可求出正比例函数的解析式;(2)首先求出点D坐标,根据DE∥AC设直线DE解析式为:,代入点D坐标即可求出直线DE解析式,联立直线DE解析式和正比例函数解析式即可求出点E的坐标;(3)首先求出△ABO的面积,然后分点P在x轴和点P在y轴两种情况讨论,设出点P坐标,根据列出方程求解即可.【详解】解:(1)将点A(4,1)代入得,解得:b=5,∴一次函数解析式为:,当y=3时,即,解得:,∴B(2,3),将B(2,3)代入得:,解得:,∴正比例函数的表达式为:;(2)∵一次函数解析式为:,∴C(0,5),∴D(0,-5),∵DE∥AC,∴设直线DE解析式为:,将点D代入得:,∴直线DE解析式为:,联立,解得:,∴E(-2,-3);(3)设直线与x轴交于点F,令y=0,解得:x=5,∴F(5,0),∵A(4,1),B(2,3),∴,当点P在x轴上时,设P点坐标为(m,0),由题意得:,解得:,∴P点坐标为(,0)或(,0);当点P在y轴上时,设P点坐标为(0,n),由题意得:,解得:,∴P点坐标为(0,2)或(0,-2),综上所示:P点坐标为(,0)或(,0)或(0,2)或(0,-2).【点睛】本题考查了一次函数图象上点的坐标特征、待定系数法求一次函数解析式、一次函数的性质以及一次函数图象交点的求法,解题的关键是:(1)根据点的坐标,利用待定系数法求出函数解析式;(2)利用平行直线的系数k相等求出直线DE解析式;(3)求出△ABO的面积,利用方程思想和分类讨论思想解答.23、(1)见解析,点C'的坐标是(1,-1);(2)见解析,点P的坐标是(0,0)【分析】(1)直接利用关于y轴对称点的性质得出对应点的位置进而得出答案;(2)利用轴对称求最短路线的方法,连接AC'交y轴于P点,P点就是所求的点,观察图形即可得出P点的坐标.【详解】(1)分别作A、B、C关于y轴的对称点A'、B'、C',连接A'B'、A'C'、B'C'即可得△A'B'C',△A'B'C'就是所求的图形.由图可得:点C'的坐标是(1,-1)(2)连接AC'交y轴于P点,P点就是所求的点.观察图形可得:点P的坐标是(0,0)【点睛】此题主要考查了轴对称变换,正确得出对应点位置是解题关键.24、【分析】过点A作AE⊥OC于点E,根据等边三角形的性质和含30度角的直角三角形的性质求出AE=1,,然后可得∠AOD=90°,利用勾股定理求出OD即可得到OC,进而求出CE,再利用勾股定理求AC即可.【详解】解:过点A作AE⊥OC于点E,∵是等边三角形,B(2,0),∴∠AOB=60°,OA=OB=2,∴∠AOE=30°,∴AE=1,∴,∵是等边三角形,∴∠COD=60°,∴∠AOD=90°,∴,∴,∴CE=OC-OE=,∴.【点睛】本题主要考查了等边三角形的性质、含30度角的直角三角形的性质以及勾股定理等知识,证明∠AOD=90°,求出OD的长是解答此题的关键25、(1)见解析;(2)∠CMQ=60°,不变;(3)当第秒或第2秒时,△PBQ为直角三角形;(4)∠CMQ=120°,不变.【分析】(1)利用SAS可证全等;(2)先证△ABQ≌△CAP,得出∠BAQ=∠ACP,通过角度转化,可得出∠CMQ=60°;(3)存在2种情况,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论