版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
粘结剂是将电极制作中将活性物质粘附到集流体上的高分子化合物。它起的主要作用有粘结和保持活性物质、增强活性材料与导电剂以及活性材料与集流体之间的接触,同时可以稳定极片的结构。因为循环过程中锂离子电池正负极体积会膨胀收缩,也希望粘结剂对此能够起到一定的缓冲作用。因此选择合适的锂电池粘结剂,总体要求其欧姆电阻要小,在电解液中性能稳定,不膨胀、不松散、不脱粉。一般来说,粘结剂的性能,如粘结力、柔韧性、耐碱性、亲水性等,直接影响着电池的性能。加入最佳量的粘结剂,可以获得较大的容量、较长的循环寿命和较低的内阻,这对提高电池的循环性能、快速充放能力以及降低电池的内压等具有促进作用。因此选择合适的粘结剂非常重要。锂电池粘结剂分为油溶性和水溶性两类。油溶性粘结剂以聚偏氟乙烯(PVDF)的均聚物和共聚物应用最为广泛,采用有机溶剂作为分散剂,水溶性粘结剂以丁苯(SBR)乳业粘结剂的使用较为广泛,采用水作为分散剂。表一常用粘结剂的分类与特征结合各电极材料的特性,目前正极材料主要使用PVDF油溶性材料作粘结剂,用有机溶剂进行溶解,常用的有机溶剂是N-甲基吡咯烷酮(NMP)。目前电池正极以PVDF油溶性粘结剂为主,占比高达90%,其余10%为水溶性粘结剂。为什么正极很少用水溶性粘结剂?首先,常用水溶性粘结剂SBR含有不饱和双键,在理论上是可以被4V以上的电压氧化的,极片的加工上SBR的反弹也会相对大一些。其次,水会对几乎所有的正极材料造成损害,磷酸铁锂比较轻微,但是对高镍,锂溶出很厉害,会导致浆料PH升高和容量下降。第三,水相体系很难干燥,残余水分会对容量很循环造成影响第四,现在的正极材料如钴酸锂,三元等材料的密度比较大,单位体积内物质的质量也比较大,采用SBR+CMC粘结体系时需采用水作为溶剂,但是在如此大的密度的正极材料配料过程中,极易导致浆料中材料的沉积,根本就没有办法让浆料充分分散。一旦搅拌停止,浆料就会急剧沉降。中南大学刘云建采用商品化的LiFePO4作为原料,研究对比水系粘结剂和油性粘结剂(PVDF)对LiFePO4电池初始放电容量、循环性能,倍率性能和内阻的影响,得出结论如下:利用XRD对循环后的电池正极进行分析。研究结果表明,油性粘结剂体系中LiFePO4的容量较高,首次放电容量达到124mA·h/g,且循环性能较好,200次循环容量保持率为96.3%。发现水性粘结剂电池循环后LiFePO4结构变化较大。水性粘结剂的倍率性能良好,1C(C为充放电倍率)容量是0.1C的92.2%,而对于油性粘结剂,1C容量是0.1C的85.5%;水性体系中电极界面阻抗要小于油性体系中的界面阻抗,并且水性粘结剂电池的内阻要小于油性粘结剂的内阻。粘结剂对放电容量的影响
图1所示为不同粘结剂电池的放电曲线。放电电流为0.1C,充放电电压为2.2~3.8V。二条放电曲线的放电平台基本一致,放电平台为3.2V,水性和油性粘结剂体系的中LiFePO4的比容量分别为120和124mA·h/g。水性体系中LiFePO4的克容量要略低于油性体系中LiFePO4的比容量。这可能是LiFePO4的表面较粗糙,并且在水性体系中LiFePO4颗粒表面吸附的水分较难除,残留的部分水分和电解液发生反应,生成HF。图1不同粘结剂电池的放电曲线1—水性粘结剂;2—油性粘结剂不同粘结剂对循环性能的影响
图2所示为不同粘结剂体系LiFePO4电池的循环性能曲线,充放电电流为1/3C。循环200次以后,水系和油系粘结剂电池的容量保持率分别为93.2%和96.3%。由此可见,水性粘结剂体系中LiFePO4的循环性较差。因为在水性体系中,LiFePO4颗粒比较细小,且表面形貌不规则,易于吸附水分,不利于正极材料中水分的脱除。图2不同粘结剂电池的循环性能1—水性粘结剂;2—油性粘结剂图3所示为不同粘结剂电池循环200次以后的正极材料的X射线衍射图谱。从衍射图谱可以看出,经过200次循环以后,正极材料中除了LiFePO4的特征衍射峰以外,还出现了一定的杂质,这些杂质可能是导电碳黑以及锂盐等。水性和油性不同的是,水性粘结剂电池经过200次循环以后,LiFePO4的各条主要衍射都向右漂移,并且主要衍射峰的相对强度也发生了一定的变化。这都证明,在水性粘结剂体系中,经过200次循环,LiFePO4的结构发生了较大的变化,进而导致循环性能下降。而油性粘结剂电池经过200次循环,除出现一些杂相外,其各主要衍射峰的衍射角度及相对强度都未发生明显变化。这表明,经过200次循环以后,其橄榄石结构保持得较为完好,宏观表现为循环性能良好。图3LiFePO4循环前后的XRD图谱
不同粘结剂对LiFePO4电池倍率性能的影响,图4所示为不同粘结剂电池的倍率性能比较结果。油性体系和水系LiFePO4电池1C的比容量分别为106和110.5mA·h/g,分别是0.1C比容量的85.5%和92.2%。由此可见,水性体系的倍率性能要优于油性体系的倍率性能。
图4不同粘结剂电池的倍率性能
(a)油性;(b)水性1—0.1C;2—1C图5所示为不同粘结剂体系的充电态交流阻抗图谱。图中高频区的半圆代表电解液/电极表面钝化膜和双电层中的电荷转移反应,低频区的直线则代表锂离子在固相活性物质中的扩散。从图7可以清晰地看出,油性体系中电解液/电极表面钝化膜和双电层的阻抗要远远大于水性体系的阻抗。由于电极表面阻抗大,在大电流条件下,锂离子在界面的钝化膜和双电层中扩散受到影响,进而影响整个锂离子在电极中的脱/嵌过程,从而影响了电极的倍率性能。图5不同粘结剂LiFePO4电池的阻抗曲线
粘结剂对电池内阻的影响
从图6可以看出,水性粘结剂体系电池的内阻只有6mΩ左右,而油性体系电池的内阻则高达10mΩ左右。在负极、电解液以及极耳焊接等因素相同的条件下,油性体系中,粘结剂PVDF的含量较高,电极的电导率降低,增大了LiFePO4颗粒与电解液以及颗粒与颗粒之间的阻抗,进而增大了整个电池的内阻。图6不同粘结剂电池的内阻如果水性粘合剂在锂离子电池正极使用的常见问题及解决方案1、导电剂分散:导电剂主要有乙炔黑、导电性碳黑等品种,都属于低极性亲油性物质,在水性介质中分散较为困难。可以采用搅拌球磨的机械分散方法来实现分散目的,搅拌球磨机为全不锈钢材质,磨介为8~10mm刚玉球,开动搅拌,并充分循环,磨2小时以上,经120目筛网泵出导电粘合剂料浆。测出其固含量备用。2、正极浆料生产:检查正极浆料均匀性,如果浆料已经搅拌均匀,通过真空消泡或少量乙醇、正丁醇加低速搅拌消泡后,即可进入下一步涂布工序。3、涂布:涂布设备的进料容器最好配备有搅拌器,以防活性物质沉降造成正极片不同部位组成不均一。烘箱温度设定根椐其长度和拉浆速度不同各有差异,以三段温度设置为例,进料口的前段在80~90℃,中段设为60~70℃,尾段温度更低甚至可为常温。总体原则是前高后低,以保证正极带在烘箱内迅速干燥后尽量冷却,在出带口接近常温,使极带柔韧便于卷绕。异常情况:(1)卷边,以涂布第一面时容易出现;这是由于浆料干燥过快,涂层缺乏延迟时间造成收缩严重形成的,处理方法是降低烘干温度和走带速度。(2)集电体铝带腐蚀,有两种可能性:一是正极涂层干燥程度不够,二是活性物质有强碱性的物质溶出;前者只要调整烘干温度和走带速度即可解决。后者只能更换好的活性物质,水性粘合剂不适于任何有强酸强碱性物质溶出的活性物质。4、后续工序:涂布好的正极带可在烘箱中加热和抽真空充分干燥,以防涂层中水分的包夹;但在碾压前必须在常温常压常湿度的环境中放置陈化半小时以上。正极涂层碾压后的密度根椐活性物质、导电剂的配比、种类、型号、厂商等各不相同,以钴酸锂为例,大至介于3.4~3.8范围。LA型水性粘合剂的使用从配料直至卷绕成电芯,都应在常湿度的普通车间内完成,但在电芯装入壳体注液前,卷绕好的电芯必须经加温和高真空(2mm汞柱以下)充分干燥,以后的操作应该在干燥车间内完成,而且最好工序连贯,防止电芯在放置过程中吸潮影响电池性能。5、注意事项:制浆工序中的容器应能密闭,以防水分挥发造成浆料浓度变化或干涸形成颗粒,影响以后的制浆质量。所有接触浆料设备的材质最好为不锈钢一类不受水分影响的材料,碳钢材质绝对不能使用。导电剂的分散可能有更方便快捷的方法,在保证导电剂充分分散的前提下,导电剂分散一步可以揉合到第二步正极浆料生产中。本粘合剂的特点是干、热则硬和脆(即使加热到200℃以上,粘合剂也只能分解而不会变软),而冷、潮则软且柔韧,不必参照PVDF那样加热提高粘结力,正极带在碾压、裁切、卷绕等工序中适合于在常温和正常湿度的车间进行。用本粘合剂制备的电池,正极放电容量与PVDF粘合剂相当,不要期望通过粘合剂的改变来大幅提高正极放电容量。一般情况下,生产设备的清洗和边角料的回收均可用水,可能时刷洗效果较好。应用小结(三个关键之处):1、导电剂充分分散,2、极片干燥与防止返潮,3、避免使用有强碱性物质溶出的活性材料。负极片的制造则通常采用丁苯(SBR)胶乳水溶性材料作粘结剂,以水或去离子水作溶剂,羧甲基纤维素(CMC)为增稠剂。最初,负极搅拌使用的粘结剂也是PVDF等油系粘结剂,但是因为考虑到电池内极化严重,且水系更环保和性价比更高且能代替其粘结作用,故发展到现在负极选用水系粘结剂已经成为其主流方向。水性粘结剂在性能方面具有以下几个优势:(1)水性粘结剂分解温度高于270℃而具有较好的热稳定性;(2)在加工稳定性方面,与常规的乳液相比,水性粘结剂具有良好的抗冻融性能,并且在高速剪切下不会破乳,具有优异的研磨稳定性,非常适合与粉料一起进行机械分散;(3)在储运稳定性方面,常规乳液在低于冰点后就会出现破乳固化失效,而水性粘结剂即使在温度低于冰点以下也不会破乳,当温度恢复到冰点以上时,即恢复流动性,仍能够继续使用;(4)在加工方面,突破了溶剂型粘结剂效率低下的限制,极大的提高涂布的生产效率,并且其压实密度可以与传统的油系PVDF相媲美。待业内相关技术逐渐成熟,尤其是正极水性粘结剂的逐步发展,水性粘结剂将会最终替代油性粘结剂。SBR是应用最广泛的水性粘结剂,98%锂电负极粘结剂采用了SBR。SBR是丁苯胶乳的英文缩写,SBR粘结剂的固含量一般为49%~51%,极易溶于水和极性溶剂中,具有很高的粘结强度以及良好的机械稳定性和可操作性,用在电池业作为粘结剂,粘结剂效果良好,质量稳定。负极粘结剂的用量通常占负极材料的1.5%。不同粘结剂对电池性能的影响对粘结强度的影响:通过对高分子聚合物构造和分子量的的控制,可以对粘结剂在锂电池内部的延展性(Strain)和强度(Stress)进行控制。通过粘结剂粒子表面官能团改性,能够影响到粘结剂在活性物中的分布位置(粘结剂有效聚集与活性物质接触部位)。面对不同活性物质可以通过分布影响并提高粘结强度。对迁移抑制的影响:粘结剂是有机化学品,悬浮于水中呈液态乳液状。添加在浆料中并涂布在极片上,为提升生产效率,一般会对烘干温度进行提升(传送速度快)来满足生产,温度高时水分的蒸发速度更快,因此悬浮的粘结剂会快速的迁移至极片表面,造成Cu界面粘结剂缺失,特别是在辊压时引起粘辊或脱粉,掉料等现象。JSR聚合技术从TRD系列粘结剂产品开始,适应市场需求,从聚合手段对抑制迁移做出贡献。
对内阻的影响:粘结剂粒子在极片中干燥后,在电池中会吸收电解质溶胀,过大的溶胀会影响e-电子传递,造成内阻的上升。通过对高分子与电解质亲和度的控制,可对内阻上升起到一定的阻止作用。
对电池膨胀的影响:对粘结剂粒子表面单体成分控制,并进行表面改性,从而达到对活性
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 特种用途钢丝及钢丝绳相关行业投资方案范本
- 冷气(N2)推进系统相关行业投资方案范本
- 井口及采油树专用件相关行业投资方案
- 企业信息管理优化方案
- 水利工程土方管理协议书
- 2024年国际贸易货物出口标准合同
- 2024年交易促成居间协议
- 2024年多联机空调技术升级合同
- 建筑工程审计存在的问题及优化措施
- 2024年劳务分包:粉刷工作合同样本
- 安全生产治本攻坚三年行动方案(2024-2026)
- NB-T+10908-2021风电机组混凝土-钢混合塔筒施工规范
- MOOC 颈肩腰腿痛中医防治-暨南大学 中国大学慕课答案
- 标准检验指导书(SIP)-(格式模板)
- 导电炭黑的用途及使用方法
- 浅谈博物馆布展设计的内容与形式
- 最新和君创业《管理咨询技艺》页(实用)
- U型管卡标准[图表卡片]
- 全国抗震设防烈度表
- (完整版)光伏电站防冻措施
- 婚礼庆典之婚庆现场布置合同
评论
0/150
提交评论