版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.3探索与表达规律(第2课时)北师大版数学七年级上册导入新知小亮:你在心里想好一个两位数,将十位数字乘以2,然后加上3,再把所得新数乘以5,最后把得到的新数加上个位数字,把你的结果告诉我,我就知道你心里想的两位数.
小丽:怎么知道的呢?你知道小亮是怎么算出来的吗?我的结果是93.你心里想的是78.我的结果是27.你心里想的是12.导入新知素养目标1.能根据整式的意义以及整式的相关运算找出实际问题的规律.2.运用整式的运算对规律进行探索,并能解释规律.3.能按照规律写出代数式.探究新知知识点数字中的规律探究规律:结果为原两位数与15的和.如果用a,b分别表示一个两位数的十位数字和个位数字,那么这个两位数可以表示为,则可得,5(2a+3)+b=10a+b+15
10a+b探究新知用代数式表示数的变化的规律:(1)数字为整数,考虑相邻两数的和、差、积、商、符号等方面是否存在
规律,也可以是奇、偶、平方等方面的规律;(2)数字为分数,可分别观察分子、分母的变化规律及它们之间的联系;(3)若表示数字变化规律的是等式(或表格),可将每个等式对应写好,
然后比较每一行每一列数字之间的关系,从而找出规律.方法归纳探究新知思考:(1)一个三位数能否被3整除,只要看这个数的各数位上的数字之和能否被3整除。你能说明其中的道理吗?(2)一个四位数能否被3整除是否也有这样的规律?请说明理由,
例
将棱长为1的正方体层层叠放如图所示,问第(5)个、第(6)个
图形各需多少个正方体?探究新知素养考点数字中的规律解:第(5)个图形需1+(1+2)+(1+2+3)+(1+2+3+4)+(1+2+3+4+5)=35(个)正方体.
同理,第(6)个图形需56个正方体.方法点拨:不易求解时,可以先动手摆几个图形,再从中找出规律.巩固练习变式训练如图,用灰、白两色正方形瓷砖铺设地面,第n个图案中白色瓷砖有________块.(3n+2)第2个图案第1个图案第3个图案连接中考现定义一种变换:对于一个由有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,例如序列S0:(4,2,3,4,2),通过变换可生成新序列S1:(2,2,1,2,2),若S0可以为任意序列,则下面的序列可作为S1的是()A.(1,2,1,2,2) B.(2,2,2,3,3)C.(1,1,2,2,3) D.(1,2,1,1,2)D课堂检测基础巩固题1.观察以下一列数的特点:0,1,-4,9,-16,25,…,则第11个数是(
)A.-121
B.-100C.100
D.121B课堂检测B2.观察如图的“品”字形中各数之间的规律,根据观察到的规律得出a的值为(
)A.23
B.75C.77
D.139基础巩固题课堂检测3.已知a1=3+1,a2=3×2+2,a3=3×3+3,a4=3×4+4,……,则an=(
)A.3n+nB.3nC.3n+3D.3+3nA基础巩固题课堂检测4.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,通过观察,用所发现的规律确定215的个位数字是________.8
基础巩固题课堂检测5.观察下列各式:1×5=5,而5=32-22;2×6=12,而12=42-22;3×7=21,而21=52-22;
……则10×14的值为________,写出与题目相符合的形式:________________.140140=122-22
基础巩固题能力提升题课堂检测
已知1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…,根据前面各式的规律可猜测:101+103+105+…+199=(
)A.7
500
B.10
000C.12
500
D.2
500A拓广探索题课堂检测
观察下列等式:12×231=132×21;13×341=143×31;23×352=253×32;34×473=374×43;……以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同的规律,我们称这类等式为“数字对称等式”.课堂检测(1)根据上述各式反映的规律填空,使式子成为“数字对称等式”:
①52×______=______×25;
②______×396=693×______.2755726336拓广探索题课堂检测(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一般规律的等式(用含a,b的等式表示).解:“数字对称等式”一般规律的等式为:=[100a+10(a+b)+b]×(10b+a).拓广探索题(10a+b)×[100b+10(a+b)+a]数字中的规律探索规律问题,要从给出的几个有限的数据着手,认真观察其中的变化规律,尝试猜想、归纳其规律,并取特殊值代入验证在探索规律的过程中,要善于变换思维方式,这样才能收到事半功倍的效果课堂小结课后作业作业内容教材作业从课后习题中选取自主安排配套练习册练习谢谢大家爱心.诚心.细心.耐心,让家长放心.孩子安心。样,也可能因讨厌一位老师而讨厌学习。一个被学生喜欢的老师,其教育效果总是超出一般教师。无论中学生还是小学生,他们对自己喜欢的老师都会有一些普遍认同的标准,诸如尊重和理解学生,宽容、不伤害学生自尊心,平等待人、说话办事公道、有耐心、不轻易发脾气等。教师要放下架子,把学生放在心上。“蹲下身子和学生说话,走下讲台给学生讲课”;关心学生情感体验,让学生感受到被关怀的温暖;自觉接受学生的评价,努力做学生喜欢的老师。教师要学会宽容,宽容学生的错误和过失,宽容学生一时没有取得很大的进步。苏霍姆林斯基说过:有时宽容引起的道德震动,比惩罚更强烈。每当想起叶圣陶先生的话:你这糊涂的先生,在你教鞭下有瓦特,在你的冷眼里有牛顿,在你的讥笑里有爱迪生。身为教师,就更加感受到自己职责的神圣和一言一行的重要。善待每一个学生,做学生喜欢的老师,师生双方才会有愉快的情感体验。一个教师,只有当他受到学生喜爱时,才能真正实现自己的最大价值。义务教育课程方案和课程标准(2022年版)简介新课标的全名叫做《义务教育课程方案和课程标准(2022年版)》,文件包括义务教育课程方案和16个课程标准(2022年版),不仅有语文数学等主要科目,连劳动、道德这些,也有非常详细的课程标准。现行义务教育课程标准,是2011年制定的,离现在已经十多年了;而课程方案最早,要追溯到2001年,已经二十多年没更新过了,很多内容,确实需要根据现实情况更新。所以这次新标准的实施,首先是对老课标的一次升级完善。另外,在双减的大背景下颁布,也能体现出,国家对未来教育改革方向的规划。课程方案课程标准是啥?课程方案是对某一学科课程的总体设计,或者说,是对教学过程的计划安排。简单说,每个年级上什么课,每周上几节,老师上课怎么讲,课程方案就是依据。课程标准是规定某一学科的课程性质、课程目标、内容目标、实施建议的教学指导性文件,也就是说,它规定了,老师上课都要讲什么内容。课程方案和课程标准,就像是一面旗帜,学校里所有具体的课程设计,都要朝它无限靠近。所以,这份文件的出台,其实给学校教育定了一个总基调,决定了我们孩子成长的走向。各门课程基于培养目标,将党的教育方针具体化细化为学生核心素养发展要求,明确本课程应着力培养的正确价值观、必备品格和关键能力。进一步优化了课程设置,九年一体化设计,注重幼小衔接、小学初中衔接,独立设置劳动课程。与时俱进,更新课程内容,改进课程内容组织与呈现形式,注重学科内知识关联、学科间关联。结合课程内容,依据核心素养发展水平,提出学业质量标准,引导和帮助教师把握教学深度与广度。通过增加学业要求、教学提示、评价案例等,增强了指导性。教育部将组织宣传解读、培训等工作,指导地方和学校细化课程实施要求,部署教材修订工作,启动一批课程改革项目,推动新修
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 淮阴师范学院《生态学》2021-2022学年第一学期期末试卷
- 淮阴师范学院《近代物理实验》2022-2023学年第一学期期末试卷
- 淮阴师范学院《中学数学学科课程标准与教材分析》2022-2023学年第一学期期末试卷
- 淮阴师范学院《电子商务法律与法规》2023-2024学年第一学期期末试卷
- 淮阴师范学院《电气控制与PLC》2022-2023学年期末试卷
- DB3304T028-2024机关事务管理 保洁服务规范
- DB 1502-T 026-2024多晶硅生产企业能源管理规范
- 文书模板-《老年人观赏类活动策划方案》
- 搪瓷制品在环保行业中的应用与发展趋势考核试卷
- 低温仓储的网络与信息安全管理考核试卷
- 汽车外覆盖件
- 公共政策课件 swot分析与美国西南航空公司的成功
- 西方经济学十大原理
- 函数的奇偶性(第二课时) (知识精讲+备课精研) 高一数学 课件(苏教版2019必修第一册)
- xx学校“无废校园”创建推进工作总结
- GB/T 23704-2017二维条码符号印制质量的检验
- GB 10205-2001磷酸一铵、磷酸二铵
- 红色消防安全知识宣传培训课件PPT模板
- 招标投标法实务讲座
- 《乡土中国》《家族 》《男女有别》联读 【备课精讲精研】 高中语文
- 项目进度管理培训(-)课件
评论
0/150
提交评论