




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
No.2024-10
UsingDensityForecastfor
Growth-at-RisktoImproveMeanForecastofGDPGrowthinKorea
YoosoonChang,Yong-gunKim,BoreumKwak,JoonY.Park
2024.9
ChangyongRhee
04531,Korea
JaeWonLee
(DirectorGeneraloftheInstitute)
2024
BOKWPNo.2024-10
UsingDensityForecastforGrowth-at-
RisktoImproveMeanForecastof
GDPGrowthinKorea
YoosoonChang*,Yong-gunKim**,BoreumKwak***,JoonY.Park†
September,2024
Theviewsexpressedhereinarethoseoftheauthors,anddonotnecessarilyreflecttheofficialviewsoftheBankofKorea.Whenreportingorcitingthispaper,theauthors’namesshouldalwaysbeexplicitlystated.
∗DepartmentofEconomics,IndianaUniversity,Email:yoosoon@.∗∗BankofKorea,Email:ygkim@bok.or.kr.
∗∗∗BankofKorea,Email:br.kwak@bok.or.kr.
†DepartmentofEconomics,IndianaUniversity,Email:joon@.
TheresearchreportedinthispaperwassuggestedbyChangyongRhee,thegovernoroftheBankofKorea.WearegratefultoDomenicoGiannone,MichaelMcCracken,TatevikSekh-posyan,NamKangLee,RaffaellaGiacomini,andtoTaeyoungDohfortheirhelpfulcommentsanddiscussions.WealsothankDowanKimandJihyunKimfortheircarefulandconstructivereviewsandtheparticipantsoftheBOKseminarfortheirfeedback.ThisresearchisfinanciallysupportedbytheBankofKorea.
Contents
I.Introduction 1
II.ForecastsofKoreanGDPGrowth 5
III.TheModelandEconometricMethodology 12
IV.EmpiricalResults 18
V.Conclusion 41
A.ConstructingRealGDPGapandFinancialCondition
Index 45
B.RestrictedModelswithSingleandDoubleFactors 49
C.AdditionalResultsforRestrictedModelwithMean
Factor 53
UsingDensityForecastforGrowth-at-Riskto
ImproveMeanForecastofGDPGrowthinKorea
Inthispaper,westudyhowwemayusedensityforecaststoimprovepointfore-castsfortheKoreanGDPgrowthratesduringtheperiodfrom2013:Q3to2022:Q1.
Althoughthetimespanunderinvestigationismuchshorterthandesired,ourcon-clusionsareclear.Densityforecastsimprovepointforecasts,aslongastheyareeffectivelyapproximatedandrepresentedasfinitedimensionalvectorsbyappro-priatelychosenfunctionalbases.However,theymayonlybeusedtoadjustpointforecasts.Combiningthemwithpointforecaststodefineweightedmeanforecastsdoesnotyieldanymeaningfulimprovement.Thefunctionalbasesweuseforourbaselineapproacharetheleadingfunctionalprincipalcomponents,whichbycon-structionmostefficientlyextractthevariationsindensityforecastsovertime.Todisentangletheeffectsofthemeanandotheraspectsofdensityforecasts,however,wealsousethefunctionalbasis,whichdesignates,astheleadingfactor,themeanfactorthatcapturesthetemporalchangesinthemeanofdensityforecasts.Especiallywiththeuseofthisfunctionalbasis,weseeadrasticincreaseintheprecisionofpointforecastsfortheKoreanGDPgrowthrates.Infact,themeansquarederrorofpointforecastsdecreasesbymorethan33%,iftheyareadjustedbydensityforecastswithourfunctionalbasisincludingthemeanfactor.
Keywords:GDPgrowthrate,pointforecast,growth-at-riskdensityforecast,func-tionalregression,functionalbasis,functionalprincipalcomponentanalysis
JELClassification:C53,E17,E37
1
BOKWorkingPaperNo.2024-10
I.Introduction
TheBankofEnglandintroduceditsfamousfanchartsin1996tohelppolicy-makersandthepublicbetterunderstandtherisksanduncertaintiessurroundingtheircentralinflationprojections.Sincethen,centralbanksandmajorresearchinstitutionsworldwidehavebeenprovidingmoreinformationregardingtheun-certaintiesaroundtheirmeanorpointforecastsofkeyeconomicindicators,no-tablyforGDPgrowthandinflation.Thistrendhasledtothepublicationofdensityforecastsbyvariousinstitutionsincluding,amongothers,theBankofCanada,theNorgesBank,theFederalReserveBoardofGovernors,theNYFED,andtheIMF,eachofferingitsownestimatesfortheprobabilitydistribu-tionusingvariouseconometricapproaches,inadditiontotheconventionalpointforecasts,ofthesevariables.TheBankofKorea(BOK)isinternallyexaminingdensityforecastsaswellasannouncingpointforecastsfortheGDPgrowthinKoreatoprovidetheirassessmentsofthegrowth-at-risk(GaR),i.e.,therisksanduncertaintiesassociatedwiththefutureeconomicgrowth,inKorea.
ThetwoforecastsforGDPgrowthrates,pointforecasts,anddensityfore-castsaretypicallypreparedbydistinctiveworkinggroupsfordifferentpurposesrelyingonnotentirelyoverlappingsetsofinformation.However,pointforecastsareconsideredbymostpeopleasmeanforecasts,i.e.,forecastsofthemeanofGDPgrowthrates,1)whicharealsoprovidedbydensityforecastsasoneoftheircharacteristics.Publishingdensityforecastsaswellaspointforecaststhereforenecessarilycreatesaproblemofdiscordance,sincethemeanofadensityforecastwouldnotagreewiththecorrespondingpointforecastunlesstheyarealignedwitheachotherbeforetheirpublication.Therefore,raisedarethreeimportantissuesregardingthejointpublicationofpointanddensityforecasts:(i)whetherdensityforecastsprovideanyusefulinformationforpointforecasts,(ii)howtocombinetheadditionalinformationindensityforecastswiththatinpointfore-
1)PointforecastsmayalsobeinterpretedastheforecastsforotherdistributionalcharacteristicsofGDPgrowthratessuchasmedian,modeorevenaparticularquantilebyspecificallylookingatanappropriatelossfunctionfortheforecastingerror.Inthepaper,weusethemeansquaredlossfunctionfortheforecastingerrorassumingthatpointforecastsareregardedastheforecastsforthemeanofGDPgrowthrates.
UsingDensityForecasttoImproveMeanForecastofGDPGrowthinKorea
2
casts,andfinally(iii)howtoalignthemeanofadensityforecastwiththecor-respondingpointforecast.
Inthispaper,weaddressandfindasolutiontoeachoftheseissuesfortheforecastsofGDPgrowthratesinKorea.Aspointforecasts,weusetheBOKofficialone-year-aheadforecastsduringtheperiodfrom2013:Q3to2022:Q1.Overthesameperiod,densityforecastsareobtainedbasedonacopulabasedapproachasproposedinLee(2020).2)Weconstructakeyvariable,theFinancialConditionIndex(FCI),usingvariouseconomicvariablesthatarebelievedtoreflectmacroandfinancialmarketconditionsinKorea.Ascovariates,weincludetherealGDPgap,theU.S.federalfundsrate(FFR),thespreadbetweentheU.S.FFRandtheKoreancallrate,aswellastheFCI.3)Foreachtimeperiod,wefollowAdrianetal.(2019)andcomputefourconditionalquantilevalues,atthelevels5%,25%,75%,and95%ofGDPgrowthratesconditionalonthesetofourcovariates,anddefineaskewedt-densitywithfourparametersthatmostcloselymatchesthecomputedconditionalquantilevaluesasourdensityforecast.
OurstudyemploysafunctionalregressionofthefutureGDPgrowthrateonitsdensityforecastasanadditionalfunctionalcovariate,aswellasitspointforecastasausualscalarcovariate.Thoughsimple,thisfunctionalregressionisexpectedtoprovidedirectanswerstoourquestions.Ifthedensityforecastisasinformativeasthepointforecast,thenitwouldcertainlyimprovetheprecisionofthepredictionifwecombinethedensityforecastwiththepointforecasttocomeupwithanewpredictor.Ourfunctionalregressioncanbeveryusefulinthiscontext,sincewemayjustrunthefunctionalregressionandeasilydefineanewpredictorasalinearcombinationofthetwocovariates:thepointforecastandthedensityforecast.Evenifthedensityforecastisnotasinformativeasthepointforecast,wemaystillusethedensityforecasttoadjustthepointforecastandimprovetheprecisionoftheforecast.Inthiscase,wemaysimplyconsiderthefunctionalregressionofthepredictionerrormadebythepointforecastonthedensityforecastasafunctionalcovariate.
2)LeewasinchargeofproducingdensityforecastsforinternaluseattheBOK,andwasworkingattheBOKatthetimethisprojectwasstartedin2022.
3)Adrianetal.(2019)useasconditioningvariablesGDPgrowthrateandFCI.
3
BOKWorkingPaperNo.2024-10
Toestimatethefunctionalregressionrequiredforourstudy,weneedtocon-vertthedensityforecastintoafinitedimensionalvector.Forthis,weapproximatethedensityforecastasafinitelinearcombinationofanappropriatelychosenfunctionalbasis,whichisrepresentedasafinitedimensionalvectorofthecoeffi-cientsappearinginthelinearcombinationofthebasisusedtoapproximatethedensityforecast.Thetransformationtomaptheapproximatedensityforecasttoafinitedimensionalvectorisone-to-oneandpreservesthedistance.Therefore,onceweapproximateandrepresentthedensityforecastasafinitedimensionalvectorusingafunctionalbasis,ourfunctionalregressionessentiallyreducestothestandardregressionthatmaybeestimatedbytheusualOLSprocedure.Anestimateforthefunctionalcoefficientforthedensityforecastcanbeeasilyob-tainedbymappingtheOLSestimatorobtainedfromthecorrespondingstandardregressionsbacktoafunctionalestimatebyapplyingtheinversetransformation.
Forthebaselinefunctionalregressions,weusetheleadingfunctionalprin-cipalcomponents(FPCs)ofobserveddensityforecastsasourfunctionalbasis.Byconstruction,theleadingFPCsmostefficientlyextractthevariationinanyfunctionalobservationsand,forthisreason,itismostwidelyusedasafunc-tionalbasisinawiderangeofapplicationsinfunctionaldataanalysis.Indeed,Changetal.(2022)showthatusingtheleadingFPCsasafunctionalbasistoapproximateandrepresentfunctionalobservationsasfinitedimensionalvectorsentailssomeoptimalpropertiesinestimatinggeneralfunctionalregressions.Inthepaper,however,wealsoemployanotherfunctionalbasistodisentangletheeffectofthemeanofthedensityforecast,fromtheeffectsofanyotheraspectsofthedensityforecast,onthepredictionofactualgrowthrates.Forthispurpose,weusethefunctionalbasisconsistingofthefirstelementdesignatedasthemeanfactor,whichcapturesthetemporalchangesinthemeanofthedensityforecast,andotherelementsgivenbytheleadingFPCsofthecentereddensityforecasts,i.e.,thedensityforecastswiththeirmeansshiftedtozero.
Themostseriouslimitationofourstudyisthatthereareonly35quarterlyobservationsavailablefortheofficialBOKpointforecasts.Wearefullyawareofthefactthatoursamplesizeismuchsmallerthandesiredandthatthecon-sequenceofthislimitedavailabilityofdatacanbeseverelydetrimentaltoour
UsingDensityForecasttoImproveMeanForecastofGDPGrowthinKorea
4
study.Thismakesithardforustorelyonthesophisticatedfunctionaldataanalysisthatweneedtoadopttoinvestigateourproblemsinfullgenerality.4)Fortunately,however,weareabletodrawasetofclearandcoherentconclusionsonallofourthreemainquestions:whethertheuseofdensityforecastsishelp-fulatallforimprovingpointforecasts,howtousetheinformationondensityforecaststoprovidebetterpointforecasts,andhowtomakethemeanofden-sityforecastsaccordwithpointforecasts.Ourresultsareconsistentandrobustacrossdifferentchoicesoffunctionalbasesandvariousothertuningparameters,andtheyseemtobequitereliable.
Theuseofdensityforecasts,inadditiontopointforecasts,appearstogener-allyimprovetheprecisionoftheforecastforfutureKoreanGDPgrowthrates.Ifdensityforecastsarecombinedwithpointforecastsbasedonourfunctionalregressiontodefineweightedmeanforecasts,however,theforecastprecisiondoesnotimprovesignificantly.Foramoremeaningfulimprovement,densityforecastsshouldbeusedonlytoadjustpointforecasts.TheseareconclusionsthatwedrawfromourfunctionalregressionestimatedwiththefunctionalbasisconsistingoftheleadingFPCsofobserveddensityforecasts.Todisentangletheeffectsofthemeanandotherdistributionalaspectsofdensityforecasts,wealsouseanotherfunctionalbasisincludingthemeanfactor,whichcapturesthetemporalchangesinthemeanofdensityforecasts,andtwootherfactorsextractedastheFPCsofthecentereddensityforecasts.Withtheuseofthisfunctionalbasis,weseeamostdrasticincreaseintheprecisionoftheforecastforfutureGDPgrowthrates.Infact,themeansquarederrorofpointforecastsdecreasesbymorethan33%,iftheyareadjustedbydensityforecastswiththefunctionalbasisincludingthemeanfactor.
ThedetailsofourempiricalresultshavefurtherimplicationsonhowbestdensityforecastscanbeusedtoadjustpointforecaststoimprovetheprecisionofthepointpredictionofthefutureKoreanGDPgrowthrates.First,ourresultsshowthathistoricallythepointforecastsforKoreangrowthratestendtobelow
4)Duetothelimitedavailabilityofdata,wedidn’tperformanyformalback-testing.Wedrewourconclusionsmostlybasedonthebiasandvariancecomputedsimplyfromtheforecastingregressionmodel.
5
BOKWorkingPaperNo.2024-10
whenpessimisticfuturescenariosareprevailingwithpotentiallyhighdownsiderisks.Althoughthetendencytooverreactalsoexistswhenfuturesarehighlyoptimistic,itisnotassignificantasinthepessimisticcase.Second,accordingtoourresults,themeanofadensityforecastisimportantandshouldbeexploitedtoproduceamoreprecisepointforecast.Asaconsequence,itisnotrecommendedtoshiftthedensityforecasttomakeitsmeanalignedwiththatofthepointforecast.Thelossofinformationincurredbysuchapracticecanbesubstantial.Finally,wemayalsouseourresultstodealwiththediscrepancybetweenapointforecastandthemeanofadensityforecast.Thebestwaytodealwiththisproblemisfirsttoadjustthepointforecastusingourfunctionalregressionwiththedensityforecast,andthenrefitthedensityforecastwithitsmeanalignedwiththeadjustedpointforecast.
Therestofthepaperisorganizedasfollows.SectionIIdescribeshowweconstructdensityforecastsofGDPgrowthrates.SectionIIIprovidesabriefin-troductiontothefunctionalregressionweusetopredictgrowthrateusingdensityforecastsalongwiththeBOK’sofficialpointforecasts.SectionIVpresentsourempiricalresults.Itprovidesestimatesoftheweightsonpointforecasts,anddensityforecastsusedtoconstructanewpredictor,computestheadjustmentfactorfromdensityforecaststoimprovethepointforecast,andinvestigateshowthedensityforecastsimprovethepointforecast,especiallyinwhichwaythemeanfactorofthedensityforecastscontributestoimprovingthepointforecast.SectionIValsoprovidesdiscussionsonourfindingsandtheirimplications.Sec-tionVconcludes,andtheAppendixprovidesdetailsoftheanalysesprovidedinthemaintextandsomerobustnesschecks.
II.ForecastsofKoreanGDPGrowth
1.PointForecastofGDPGrowth
ThepointforecastsanalyzedinourstudyaretheforecastsofKoreanGDPgrowthratesconstructedbytheBankofKorea(BOK).TheBOKproducesGDPforecastsforthecurrentyearandthenextyeareveryquarterandreleasestheir
UsingDensityForecasttoImproveMeanForecastofGDPGrowthinKorea
6
forecastsfourtimesperyearinFebruary,May,August,andNovember.5)TheBOK’sofficialpointforecastsarefixed-eventforecaststhatareproducedeachquarterforthesametargetvariables,theGDPgrowthratesforthecurrentcal-endaryearandthenextcalendaryear,withdecreasingforecasthorizonsastimeprogressestowardtheendoftherespectivecalendaryear.Underthisfixed-eventforecastingscheme,forexample,theBOK’spointforecastsmadeinMay2022andAugust2022bothprovideaforecastforthesametargetvariable,i.e.,thecurrentcalendaryear2022,butwithashorterforecasthorizonfortheforecastmadelaterinAugust2022.Thefixed-eventforecaststhereforereflectdecreasinguncertaintiesineconomicconditionsastheforecasthorizonshortens,and,conse-quently,theresultingforecasterrorvariancesshowsuchseasonalcharacteristics.
Forourstudy,however,weuseanalternateforecastingschemethatpro-ducesfixed-horizonforecasts.Thefixed-horizonpointforecastsaremoresuit-ableforourempiricalanalysesfortworeasons.First,unliketheBOK’sofficialfixed-eventpointforecasts,fixed-horizonforecastsarelesssusceptibletoseasonalcharacteristicsofforecasterrorvariances.Second,withfixed-horizonforecasts,itisstraightforwardtomatchtheforecasthorizonwiththatofdensityfore-caststhatarecommonlyusedbypolicymakerstocharacterizetheuncertaintyoffuturegrowthratesaftersomefixedamountoftime.Detailsonhowwecon-structdensityforecastsfortheKoreangrowthratesareprovidedinthefollowingsubsection.
Morespecifically,weanalyzepointforecastsforone-year-aheadGDPgrowthrates.Inthisscheme,theforecasthorizonisfixedatfourquarters,whilethefore-casttargetvariablevariestorepresentthefuturegrowthratefourquartersaftertheforecastismade.Incontrasttothefixed-eventpointforecastsillustratedabove,thefixed-horizonone-year-aheadpointforecastsmadeinMay2022andAugust2022provideforecastsfortwodistincttargetvariables,thegrowthratein2023Q1andthegrowthratein2023Q2,respectively,withthesamefore-casthorizonatfourquarters,andconsequentlywithnoaforementionedseasonal
5)InNovember,theforecastsforthecurrentyearandthefollowingtwoyearsaremade.TheBOK’scurrentreportingschedulewasadoptedin2020.Priorto2020,theBOKreleaseditsforecastsinJanuary,April,July,andOctober.
7
BOKWorkingPaperNo.2024-10
patternsinforecasterrorvariances.
ToobtaintheBOK’sone-year-aheadpointforecast,wecollectthevintagequarterlypointforecastpathsconstructedbytheBOK.6)Vintagepointforecastpathsforthefirst,second,third,andfourthquartersofeachyearincludepointforecastsofGDPgrowthratesuptoseven-,six-,five-,andeight-quarters-ahead,respectively,fromthequarterswhentheofficialforecastsweremade.Eachvin-tagepointforecastpathwasconstructedusingthesameforecastingprocedureusedtoproducetheBOK’sofficialpointforecastpublishedeachquarterinoursampleperiod.Sincethesepointforecastpathswereconstructedwiththesamedataset,thesameforecastingmodel,andthesameexpertjudgmentsasthoseusedtoproducetheofficialpointforecasts,weassumethepointforecastsusedinourstudyasofficialBOKone-year-aheadpointforecasts.
Forourstudy,weconstructaquarterlytimeseriesofone-year-aheadpointforecastsusing,foreachquarter,thefour-quarter-aheadforecastfromthevintagepointforecastpathfortheperiod2013:Q3to2022:Q1.Oursampleperiodisdeterminedbythedataavailability.Itstartsfrom2013:Q3sincethevintageBOK’spointforecastpathsforGDPgrowthratesareavailableonlyfromthen,anditendsin2022:Q1sinceweneedactualone-year-aheadGDPgrowthratesastheforecasttargetvariableforouranalysis.7)Oursamplesizeisrathershortwithonly35quarterlyobservations,butthisisthelongestwecanstretchifwewanttouseonlyvintagedata.Wemay,ofcourse,extendthesampleperiodifweusemodel-basedpointforecastsconstructedex-postfortheearlieryears.
2.DensityForecastofGDPGrowth
Therearemanydifferentwaystoconstructdensityforecasts.Oneofthemostcommonlyusedapproaches,duelargelytoitssimplicity,istofollowAdrianetal.
6)Quarterlypointforecastpathsareconfidentialdataandconstructedforinternalanalysisandjudgmentsonly.
7)Toconstructthetargetannualgrowthrateateachquarter,sayat2020:Q4,weneedfourquarterlyGDPleveldatafor2020:Q4,2020:Q3,2020:Q2,and2020:Q1,alongwithfouryear-over-yearGDPchanges,2021:Q4-2020:Q4,2021:Q3-2020:Q3,2021:Q2-2020:Q2,and2021:Q1-2020:Q1.
UsingDensityForecasttoImproveMeanForecastofGDPGrowthinKorea
8
(2019)andobtaindensityforecastsfromthelinearquantileregressionoffutureGDPgrowthratesonthecurrentfinancialconditionindex(FCI),aswellasGDPgrowthrate,andfitaskewedt-densitywithfourparametersthatmostcloselymatchesthecomputedquantilevalues.Asanalternative,Carrieroetal.(2020)proposemodel-implieddensityforecastsconstructedfromaBayesianVARmodel.Linearityofthequantileregressionandnormalityoftheerrordistributionhavebeenchallenged,andtherearemoreflexiblemodelsandmethodsallowingfornonlinearityandnonparametricerrordistributions.Theyincludeanonpara-metricestimationofnonlinearVARbyAdrianetal.(2021),aMarkovswitchingmodelbyCaldaraetal.(2021),useofGARCH-typevolatilitybyBrownleesandSouza(2021),andasemi-parametricestimationusingsurveyforecastsbyClarketal.(2020).
FollowingLee(2020),weestimateconditionalquantilesoffutureGDPgrowthbyutilizingaD-vinecopulabasedquantileregressionmethodasintroducedbyKrausandCzado(2017).Givencovariates(Xt),Xt=(X1t,...,XMt),thefunc-
tionQYt+h∣X(τ∣x)representingtheτ-thconditionalquantilevalueofthevariable(Yt+h)ofinterestisdefinedastheinverseoftheconditionaldistributionfunc-
tionFY−th∣Xt(r∣xt)of(Yt+h)on(Xt).Incontrasttothelinearquantileregression
modelusedbyAdrianetal.(2019),assumingalinearrelationshipbetweentheconditionalquantilesandexplanatoryvariables,thecopulabasedquantilere-gressionmethodallowsustoinvestigateanonlinearrelationshipbetweentheconditionalquantilesandcovariatesbymodelingtheconditionaldistributionfunction(FYt+h∣Xt)asacopulafunction.8)
Specifically,wesupposethatthevariable(Yt+h)ofinterestandcovariates
spectively.Thenwedefine(Vt+h)and
1followunivariatemarginaldistributionfunctionsFYt+hand(FXj)1,re-
8)LinearquantileregressionmodelssusceptibletothepotentialissueofquantilecrossingasconditionalquantilesareaffinefunctionsofcovariatesXt.Underthisspecification,theslopeparametersdependontheprobabilityindexτ,whichmaycausequantilesatdifferentvaluesofτtocrosseachother,and,therefore,theconditionalquantilescannotbelinearincovariatesXt.Thisissuepossiblyleadstobiasintheestimation,which,inturn,mayresultinover-orunderestimatingrisks.Ontheotherhand,thecopula-basedconditionalquantilefunctionnaturallysatisfiesmonotonicitywithoutsuchanissue.
9
BOKWorkingPaperNo.2024-10
FXj(Xj)bytheprobabilityintegraltransformation(PIT)of(Yt+h)and(Xjt),re-spectively,whichareuniformlydistributedontheinterval[0,1],andsetthejointdistributionof(Yt+h)and(Xt)as
F(yt+h,x1t,...,xMt)=C(vt+h,u1t,...,uMt),
whereCdenotesacopulathatisa(M+1)-dimensionaldistributionfunctiononthehypercube[0,1]M+1withuniformlydistributedmarginals.Theconditionaldistributionfunction(FYt+h∣Xt)of(Yt+h)on(Xt)cannowbewrittenasthatoftheirPITcounterparts,i.e.,
FYt+h∣Xt(r∣xt)=CVt+h∣Ut(r∣ut),
forr∈R.Asaresult,theconditionalquantilefunctionof(Yt+h)on(Xt)canbeobtainedfromtheconditionalcopulaquantilefunctionCVt+h∣Utof(Vt+h)on(Ut)
as
QYt+h∣Xt(τ∣xt)=FY−th∣Xt(CVt+h∣Ut(τ∣ut)),(II.1)
forτ∈(0,1).AD-vine,asasubclassofregularvinecopulas,allowsustomodelmultivariatecopulasusingtheblocksofbivariatecopulas,aso-calledpair-copulaconstruction.RefertoAasetal.(2009)foradetailedexaminationofbivariatepair-copulas.KrausandCzado(2017)implementaD-vinecopulatomodelquan-tileregressionsandshowthattheproposedmethodworksfastandaccuratelyeveninhighdimensions.
Inpractice,usingaD-vinecopulabasedquantileregression,weestimateconditionalquantilesofh-quarter-aheadrealGDPgapforh=1,...,4.Toobtain
adensityforecastofone-year-aheadrealGDPgrowth,wetransformestimatesoftheh-quarter-aheadrealGDPgaptotheconditionalquantilesoftheone-year-aheadrealGDPgrowthrateandthenfitthoseestimatestotheskewedt-distribution.Toestimatethenon-linearquantileregressionmodel(II.1),weconsidertheh-quarter-aheadrealGDPgap,whichisthecyclicalcomponentofrealGDPastheresponsevariable.FollowingHamilton(2018),wedecomposetherealGDPintotrendandcyclicalcomponentsbyregressingtheh-quarter-ahead
UsingDensityForecasttoImproveMeanForecastofGDPGrowthinKorea
10
logrealGDPontheconstant,current,andlaggedvaluesoflogrealGDP.Forexplanatoryvariables,weusetherealGDPgap,theFCI,theU.S.FFR,andthedifferencebetweentheU.S.FFRandthecallrateinKoreaavailableattimet.DetailsforconstructingrealGDPgapandFCIareavailableinAppendixA.Thedatasetusedintheestimationofdensityforecastisavailablefrom1991:Q2to2022:Q4.AllvariablesusedfordataconstructionareobtainedfromtheBOKEconomicStatisticsSystem(ECOS).
WeobtainapproximateestimatesoftheconditionalquantilefunctionfortheGDPgapforuptofourquartersaheadbyestimatinganonlinearquantileregression(II.1).Foreachquantile,weconverttheh-quarter-aheadGDPgapintothelevelofGDPbyaddingbackthetrendcomponentestimatedusingHamilton’sregression-basedfilter.Werandomlydrawh-period-aheadrealGDP30,000timesfromtheconditionalquantilesoftherealGDPlevelandcalculatetheone-year-aheadGDPgrowthrateforeachsimulationoverthepreviousfourquartersofrealGDPobservationstoobtainconditionalquantilesoftheone-year-aheadrealGDPgrowthrate.
Inthesubsequentstep,asinAdrianetal.(2019),wefittheskewedt-densitytosmooththeconditionalquantilevaluesandrecoveraprobabilitydensityfunctionof
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学校厂房出售合同范本
- 路面砖销售合同范本
- 门面解除合同范本
- 围墙花架施工合同范本
- 装修材料合同范本简单
- 废钢球出售合同范本
- 保密协议合同范本6
- 品牌挖掘机买卖合同书(28篇)
- 预算执行审计培训
- 预防呼吸道感染控制措施
- 民航基础知识应用题库100道及答案解析
- 生猪屠宰兽医卫生检验人员理论考试题库及答案
- 《陆上风电场工程设计概算编制规定及费用标准》(NB-T 31011-2019)
- 内河船舶安全检查简要概述课件
- 中考英语典型陷阱题例析
- 医院神经外科各种颅脑引流管患者护理常规
- 一级建造师铁路工程实务考试重点(掌握即可顺利通过)
- 意识障碍的判断PPT精选文档
- 家和万事兴-善人道
- 财务用发票分割单范本
- 风电机组现场吊装记录
评论
0/150
提交评论