北师大版七年级数学下册举一反三系列7.1期中期末专项复习之整式的乘除十六大必考点同步学案(学生版+解析)_第1页
北师大版七年级数学下册举一反三系列7.1期中期末专项复习之整式的乘除十六大必考点同步学案(学生版+解析)_第2页
北师大版七年级数学下册举一反三系列7.1期中期末专项复习之整式的乘除十六大必考点同步学案(学生版+解析)_第3页
北师大版七年级数学下册举一反三系列7.1期中期末专项复习之整式的乘除十六大必考点同步学案(学生版+解析)_第4页
北师大版七年级数学下册举一反三系列7.1期中期末专项复习之整式的乘除十六大必考点同步学案(学生版+解析)_第5页
已阅读5页,还剩65页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题7.1整式的乘除十六大必考点【北师大版】TOC\o"1-3"\h\u【考点1幂的基本运算】 1【考点2幂的逆运算】 2【考点3利用幂的运算进行比较大小】 2【考点4幂的混合运算】 3【考点5利用幂的运算进行简便计算】 3【考点6幂的运算中的新定义问题】 4【考点7整式的乘法】 5【考点8整式乘法的应用】 6【考点9利用乘法公式求值】 7【考点10乘法公式的几何背景】 8【考点11整式乘除的计算与化简】 10【考点12整式混合运算的应用】 11【考点13利用完全平方公式或平方差公式进行证明】 12【考点14整式的乘除的规律探究】 14【考点15整式乘法的新定义问题】 15【考点16在阅读理解中整式的乘除的运用】 17【考点1幂的基本运算】【例1】(2022·湖南娄底·七年级期中)如果a2n−1an+5=a16,那么A.4 B.5 C.6 D.7【变式1-1】(2022·广东·德庆县德庆中学七年级期中)解答下列问题:(1)已知3m=5,3n(2)若3x+4y−3=0,求27x【变式1-2】(2022·安徽合肥·七年级期中)已知3x=4,3y=6,3z=12,则A.xy=2z B.x+y=2z C.x+2y=2z D.x+2y=z【变式1-3】(2022·黑龙江·大庆市第十九中学七年级期中)已知5a=2b=10,那么aba+b【考点2幂的逆运算】【例2】(2022·四川·渠县流江初级实验中学七年级期中)如果3a=5,3b=10,那么9a−b的值为(

A.12 B.14 C.18【变式2-1】(2022·安徽·合肥新华实验中学七年级期中)如果2m=5,(1)2m+2n(2)8m【变式2-2】(2022·北京昌平·七年级期中)将幂的运算逆向思维可以得到am+n=am⋅an(1)52021(2)若3×9m×【变式2-3】(2022·四川省渠县中学七年级期中)(1)已知4m=a,8n=b,用含a,b的式子表示下列代数式:①求:22m+3n②求:22m−6n(2)已知2×8x×16=223,求x的值.【考点3利用幂的运算进行比较大小】【例3】(2022·福建省罗源第二中学八年级期中)若a=3555,b=4444,c=5333,比较a、b、c的大小(

)A.a>b>c B.b>a>c C.c>a>b D.c>b>a【变式3-1】(2022·江苏·江阴市华士实验中学七年级期中)阅读下列材料:若a3解:因为a15=a所以a>b.解答下列问题:(1)上述求解过程中,逆用了哪一条幂的运算性质_A.同底数幂的乘法

B.同底数幂的除法

C.幂的乘方

D.积的乘方(2)已知x5【变式3-2】(2022·内蒙古·赤峰市松山区大庙中学八年级期中)阅读探究题:.【阅读材料】比较两个底数大于1的正数幂的大小,可以在底数(或指数)相同的情况下,比较指数(或底数)的大小,如:25>在底数(或指数)不相同的情况下,可以化相同,进行比较,如:2710与3解:2710=33[类比解答]比较254,125[拓展拔高]比较3555,4444,【变式3-3】(2022·河北石家庄·七年级期中)阅读:已知正整数a,b,c,若对于同底数,不同指数的两个幂ab和ac(a≠1),当b>c时,则有ab>ac;若对于同指数,不同底数的两个幂ab和c(1)比较大小:520______420,961(2)比较233与3(3)比较312×5【考点4幂的混合运算】【例4】(2022·福建漳州·七年级期中)计算(1)(m−n)2(2)((3)(a(4)(−4【变式4-1】(2022·陕西西安·七年级期中)计算:2x【变式4-2】(2022·重庆市第十一中学校七年级期中)计算:(1)x⋅x(2)(−4a【变式4-3】(2022·黑龙江·巴彦县第一中学八年级期中)计算:(1)x2(2)−2a【考点5利用幂的运算进行简便计算】【例5】(2022·黑龙江·哈尔滨市虹桥初级中学校七年级期中)计算0.25100【变式5-1】(2022·湖南怀化·七年级期中)计算(﹣0.25)2022×42021的结果是(

)A.﹣1 B.1 C.0.25 D.44020【变式5-2】(2022·上海杨浦·七年级期中)用简便方法计算:−【变式5-3】(2022·福建·泉州市第九中学八年级期中)阅读:已知正整数a、b、c,显然,当同底数时,指数大的幂也大,若对于同指数,不同底数的两个幂ab和cb,当a>c时,则有(1)比较大小:520_________4(2)比较233与3(3)计算42021【考点6幂的运算中的新定义问题】【例6】(2022·山东省青岛第五十一中学七年级期中)阅读材料:定义:如果10a=n,那么称a为n的劳格数,记为例如:102=100,那么称2是100的劳格数,记为填空:根据劳格数的定义,在算式a=d1000中,______相当于定义中的n,所以d直接写出d10探究:某数学研究小组探究劳格数有哪些运算性质,以下是他们的探究过程若a、b、m、n均为正数,且10a=p,根据劳格数的定义:dp=a,∵10∴10a+b=pq,这个算式中,______相当于定义中的a,______相当于定义中的∴dpq=______,即请你把数学研究小组探究过程补全拓展:根据上面的推理,你认为:dm【变式6-1】(2022·北京·清华附中八年级期中)定义一种新运算a,b,若ac=b,则a,b=c,例2【变式6-2】(2022·江苏连云港·七年级期中)阅读下列材料:小明为了计算1+2+2设S=1+2+2则2S=2+2②−①得,2S−S=S=2请仿照小明的方法解决以下问题:(1)2+2(2)求1+1(3)求−2+(4)求a+2a2+3a3【变式6-3】(2022·山东德州·八年级期中)一般地,n个相同的因数a相乘a•a•…•a,记为an;如2×2×2=23=8,此时3叫做以2为底8的对数,记为log28(即log28=3),一般地,若an=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为logab(即logab=n),如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算下列各对数的值:log24=;log216=;log264=;(2)你能得到log24、log216、log264之间满足怎样的关系式:;(3)由(2)的结果,请你归纳出logaM、logaN、logaMN之间满足的关系式:;(4)根据幂的运算以及对数的含义验证(3)的结论.【考点7整式的乘法】【例7】(2022·福建·大同中学八年级期中)计算2x+3y−42x+ay+b得到的多项式不含x、y的一次项,其中a,b是常数,则a−b的值为(

A.1 B.−1 C.−7 D.7【变式7-1】(2022·江西景德镇·七年级期中)小邢同学在计算(x+a)(x+b)中的“b”看成了“6”,算的结果为x2+3x−18,而且小颖同学在计算(x+a)(x+b)时将“+a”看成了“−a”,算的结果为(1)求出a、b的值;(2)计算出(x+a)(x+b)的正确结果,【变式7-2】(2022·江苏·扬州市江都区第三中学七年级期中)我国南宋数学家杨辉用“三角形”解释二项和的乘方规律,称之为“杨辉三角”,这个“三角形”给出了(a+b)n(n=1,1

1

(a+b)1

2

1

(a+b)1

3

3

1

(a+b)1

4

6

4

1

(a+b)……

……请依据上述规律,写出(x−2x)2022展开式中含A.2022 B.−4044 C.−2020 D.4042【变式7-3】(2022·全国·八年级专题练习)设a1,a2,a3,⋯a【考点8整式乘法的应用】【例8】(2022·浙江宁波·七年级期中)如图①,现有边长为b和a+b的正方形纸片各一张,长和宽分别为b、a的长方形纸片一张,其中a<b.把纸片I、III按图②所示的方式放入纸片II内,已知图②中阴影部分的面积满足S1=8S2,则a,A.3b=4a B.2b=3a C.3b=5a D.b=2a【变式8-1】(2022·山东泰安·期中)如图①所示,在一个边长为a的正方形纸片上剪去两个小长方形,得到一个如图②的图案,再将剪下的两个小长方形拼成一个新的长方形,如图③所示,则新长方形的面积可表示为__________.【变式8-2】(2022·安徽·宿城第一初级中学七年级期中)如图,一个长方形中剪下两个大小相同的正方形(有关线段的长如图所示)留下一个“T”型的图形(阴影部分)(1)用含x,y的代数式表示“T”型图形的面积并化简.(2)若y=3x=30米,“T”型区域铺上价格为每平方米20元的草坪,请计算草坪的造价.【变式8-3】(2022·浙江·余姚市舜水中学七年级期中)如图,长为10,宽为x的大长方形被分割成7小块,除阴影部分A,B外,其余5块是形状、大小完全相同的小长方形,其较短一边长为y.(1)由图可知,每个小长方形较长一边长为________.(用含y的代数式表示)(2)分别用含x,y的代数式表示阴影部分A,B的面积.(3)当y取何值时,阴影部分A与阴影部分B的面积之差与x的值无关?并求出此时阴影部分A与阴影部分B的面积之差.【考点9利用乘法公式求值】【例9】(2022·江苏·扬州市邗江区实验学校七年级期中)若x2+(k﹣1)x+9是一个完全平方式,则k值为_____.【变式9-1】(2022·湖南株洲·七年级期中)已知a﹣b=2,a2+b2=20,则ab值是()A.﹣8 B.12 C.8 D.9【变式9-2】(2022·湖北武汉·八年级期中)如图,正方形的边长为m+5,面积记为S1,长方形的两边长分别为m+3,m+9,面积记为S2(其中m为正整数).若某个图形的面积S介于S1,S2之间(不包括S1,S2),S的整数值有且只有15个,则m=_______.【变式9-3】(2022·江苏镇江·七年级期中)阅读下列材料:教科书中这样写道:“我们把多项式a2+2ab+b2及a2−2ab+b2叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.即将多项式x2+bx+c(【知识理解】(1)若多项式x2+kx+16是一个完全平方式,那么常数k的值为(A.4

B.8

C.±8

D.±16(2)若多项式x2+4x+m是一个完全平方式,那么常数(3)配方:x2−6x−10=x−3【知识运用】(4)通过配方发现,代数式x2(5)利用配方法因式分解:a2+2a−3=a(6)已知m2+2mn+2n2−8n+16=0(7)若M=a+1a−3,N=2a−1a−2,则【考点10乘法公式的几何背景】【例10】(2022·四川·金堂县淮口中学校七年级期中)用两种不同方法计算同一图形的面积,可以得到一个等式,如图1,是用长为x,宽为y(xy)的四个全等长方形拼成一个大正方形,用两种不同的方法计算阴影部分(小正方形)的面积,可得到(x−y)2、(x+y)2、利用上面所得的结论解答:(1)已知xy,x+y=3,5xy=54,求x-y(2)已知|a+b−4|+(ab−2)2=0,求a3+b3值.备注:a3+b3=(a+b)(a2-ab+【变式10-1】(2022·河南南阳·八年级期中)探究活动:(1)如图①,可以求出阴影部分的面积是_____(写成两数平方差的形式);(2)如图②,若将图①中阴影部分裁剪下来,重新拼成一个长方形,面积是_____(写成多项式乘法的形式);(3)比较图①,图②阴影部分的面积,可以得到公式_____.(4)知识应用:运用你得到的公式解决以下问题:计算:(a+b﹣2c)(a+b+2c);(5)若4x2−9y2=10,4x+6y【变式10-2】(2022·福建·明溪县教师进修学校七年级期中)阅读理解:若x满足210−xx−200=−204,试求解:设210−x=a,x−200=b,则ab=−204,且a+b=(210-x)+(∵a+b2∴a2+b2=解决问题(1)若x满足2022−xx−2010=22,则2022−x(2)若(2022-x)2+(x-2002)2=2020,求2022−xx−2002(3)如图,在长方形ABCD中,AB=10,BC=6,点E,F分别是BC,CD上的点,且BE=DF=x,分别以FC,CE为边在长方形ABCD外侧作正方形CFGH和CEMN,若长方形CEPF的面积为40平方单位,则图中阴影部分的面积和为多少?【变式10-3】(2022·湖南·常德市第二中学七年级期中)(1)①如图1,已知正方形ABCD的边长为a,正方形FGCH的边长为b,长方形ABGE和EFHD为阴影部分,则阴影部分的面积是______(写成平方差的形式);②将图1中的长方形ABGE和EFHD剪下来,拼成图2所示的长方形,则长方形AHDE的面积是______(写成多项式相乘的形式);(2)比较图1与图2的阴影部分的面积,可得乘法公式______.(3)利用所得公式计算:2【考点11整式乘除的计算与化简】【例11】(2022·浙江·嵊州市马寅初初级中学七年级期中)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:×−1【变式11-1】(2022·浙江·永嘉县崇德实验学校七年级期中)若定义表示3xyz3,表示-3adcA.-72n B.72n C.mn 【变式11-2】(2022·山东淄博·期中)王老师给学生出了一道题:求2x+y2x−y+22x−y2+同学们看了题目后发表不同的看法.小明说:“条件y=−1是多余的.”小亮说:“不给y=−1这个条件,就不能求出结果,所以不多余.”(1)你认为他俩谁说的有道理?为什么?(2)若本题的结果等于M,试求M的值.【变式11-3】(2022·重庆市万州第二高级中学八年级期中)已知a、b、c为实数,且多项式x3+ax2+bx+c能被多项式x2+3x-4整除,(1)求4a+c的值;(2)若a、b、c为整数,且c≥a>1,试确定a、b、c的值.【考点12整式混合运算的应用】【例12】(2022·北京·八年级期中)随着某种产品的原料涨价,因而厂家决定对产品进行提价,设该产品原价为1元,现在有两种提价方案:方案1:第一次提价x%,第二次提价y%;方案2:第一次、二次提价均为x%+y%2其中x,y是不相等的正数,请判断在分别实施这两种方案后哪种方案最终价格更高?并用乘法公式证明.【变式12-1】(2022·重庆·八年级期中)近年来,重庆成为了众多游客前来旅游的网红城市.某商场根据游客的喜好,推出A、B两种土特产礼盒,A种礼盒内有3袋磁器口麻花,3包火锅底料;B种礼盒里有2袋磁器口麻花,3包火锅底料,2袋合川桃片.两种礼盒每盒成本价分别为盒内所有土特产的成本价之和.已知每袋合川桃片的成本价是每包火锅底料成本价的一半,A种礼盒每盒的售价为108元,利润率为20%.今年10月1日卖出A、B【变式12-2】(2022·重庆南开中学七年级期中)春天是耕种的最佳时节,我校两个劳动实践小组在试验田里种植了黄瓜、番茄、辣椒三种蔬菜,单位面积种植黄瓜、番茄、辣椒的株数之比为1:2:2.第一小组种植黄瓜、番茄、辣椒面积之比为3:2:4,第二小组在余下的实验田里继续种植这三种蔬菜,将余下试验田面积的16种植辣椒,辣椒的种植总面积将达到这三种蔬菜种植总面积的38,且第二小组种植三种蔬菜的总株数是第一小组种植三种蔬菜的总株数的【变式12-3】(2022·重庆巴蜀中学七年级期中)南山植物园坐落在省级南山风景名胜区群山之中,与重庆主城区夹长江面峙,是一个以森林为基础,花卉为特色的综合性公园.备受重庆人民的喜爱;每到春季,上山赏花的人络绎不绝;一植物园附近的市民嗅到了商机,开办了植物花卉门市;将A、B、C三种花卉包装成“如沐春风”、“懵懂少女”、“粉色回忆”三种不同的礼盒进行销售;用A花卉2支、B花卉4支、C花卉10支包装成“如沐春风”礼盒;用A花卉2支、B花卉2支、C种花卉4支包装成“惜懂少女”礼盒;用A花卉2支、B花卉3支、C花卉6支包装成“粉色回忆”礼盒;包装费忽略不计,且每支B花卉的成本是每支C花卉成本的4倍,每盒“如沐春风”礼盒的总成本是每盒“懵懂少女”礼盒总成本的2倍;该商家将三种礼盒均以利润率50%进行定价销售;某周末,该门市为了加大销量,将“如沐春风”、“懵懂少女”两种礼盒打八折进行销售,且两种礼盒的销量相同,“粉色回忆”礼盒打九折销售;销售完毕后统计发现,三种礼盒的总成本恰好为总利润的4倍,则该周末“粉色回忆”礼盒的总利润与三种礼盒的总利润的比值为___.【考点13利用完全平方公式或平方差公式进行证明】【例13】(2022秋·陕西渭南·八年级校考阶段练习)证明:若a2+b【变式13-1】(2022秋·宁夏固原·八年级统考期末)在日历牌上,我们可以发现一些日期数满足一定的规律.如图是今年4月的日历牌,若任意选择图中上下相邻的四个日期(阴影部分),将其中四个位置上的数交叉相乘,再相减,例如:3×9−2×10=7,6×12−5×13=7,不难发现,结果都是7(1)请再选择两个类似的部分试一试,看看是否符合这个规律.(2)设符合条件的四个日期左上角位置上的数为a,请利用整式的运算对以上的规律加以证明.【变式13-2】(2022秋·吉林·八年级统考阶段练习)观察下列各个等式的规律:第一个等式:22-12-1=2,第二个等式:32-22-1=4,第三个等式:42-32-1=6…请用上述等式反映出的规律解决下列问题:(1)直接写出第四个等式;(2)猜想第n个等式(用含n的式子表示),并证明你猜想的等式是正确的;(3)直接写出20202-20192-2019=【变式13-3】(2022·安徽·统考二模)观察下列图形与等式:223242−?……根据图形面积与等式的关系找出规律,并结合其中的规律解决下列问题:(1)根据规律,图(4)对应的等式为________;(2)请你猜想图n对应的等式(用含n的等式表示),并证明.【考点14整式的乘除的规律探究】【例14】(2022秋·北京西城·八年级校考期中)小李同学在计算下列式子时发现了一些规律.(1)请观察并完成填空.1×3+1=22×4+1=33×5+1=4……请你根据规律写出第n个式子:.(2)接着小李又发现了下面算式的结果也是平方数,请你完成计算并填空.1×2×3×4+1=1×4+12×3×4×5+1=2×5+13×4×5×6+1=(3×6+1)对第n个式子进行猜想得nn+1n+2下面开始对猜想进行证明.n=nn+3[]+1=n2+3n下面请继续完成猜想的证明.【变式14-1】(2022春·浙江宁波·七年级统考期末)阅读:一个三位数,百位数字是x,十位数字是y,个位数字是z,我们不能用xyz表示,而要表示为100x+10y+z,有时为书写方便还可以表示为xyz,即有:xyz=100x+10y+z(1)类比:ab=(2)观察下列等式152=100×1×2+25

252=100×2×3+25猜想:①552②a52(3)验证:利用所学知识证明猜想②.【变式14-2】(2022春·宁夏银川·七年级校考期末)观察下列各式(x−1)(x+1)=(x−1)(x−1)……(1)根据以上规律,则(x−1)x(2)若(x−1)⋅M=x15−1(3)能否由此归纳出一般性规律:(x−1)x(4)由(3)直接写出结果:(a−b)a(5)根据(3)求:1+2+2【变式4-3】(2022秋·河北承德·八年级校考期末)观察:下列算式:①1×3-22=3-4=-1;②2×4-32=8-9=-1;③3×5-42=15-16=-1尝试:(1)请你按照三个算式的规律写出第④个、第⑤个算式;发现:(2)请你把这个规律用含字母的式子表示出来,并说明其正确性;应用:(3)计算2018×2020-20192=【考点15整式乘法的新定义问题】【例15】(2022秋·福建福州·八年级福建省福州第十六中学校考期中)我们定义:一个整数能表示a2+b2+a+b(a(1)请判断14______“和谐数”(填“是”或“不是”);(2)请你写出一个大于14且小于20的“和谐数”:______;(3)当整数m,n满足x+m2+n(4)若实数x,y满足9x+9y−2xy−28=0,求x2【变式15-1】(2022秋·广东惠州·八年级统考期末)配方法是数学中非常重要的一种思想方法,它是指将一个式子或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和的方法.定义:若一个整数能表示成a2+b2(例如,5是“完美数”.理由:因为5=1解决问题:(1)已知29是“完美数”,请将它写成a2+b2(a,(2)若x2−4x+5可配成x−m2+n(m,n为常数),则探究问题:(3)已知x2+y【变式15-2】(2022秋·福建莆田·八年级统考期末)“回文”是汉语特有的一种使用词序回环往复的修辞方法,正着读,倒着读,文字一样,韵味无穷例如:处处飞花飞处处,潺潺碧水碧潺潺.数学中也有像回文联一样的“回文等式”,例如,以下是三个两位数乘两位数的“回文等式”:21×24=42×12,31×26=62×13,12×84=48×21.(1)下列选项中能构成“回文等式”的是______.(填上所有正确的序号)A.18×31与13×81;B.46×32与63×24;C.46×96与69×64;D.22×454与454×22;E.31×286与682×13(2)请写出两位数乘两位数的“回文等式”的一般规律,并用所学数学知识证明.【变式15-3】(2022秋·河南安阳·八年级统考期末)若整式A只含有字母x,且A的次数不超过3次,令A=ax3+bx2+cx+d,其中a,b,c,d为整数,在平面直角坐标系中,我们定义:M(b+d,a+b+c+d)为整式A的关联点,我们规定次数超过3次的整式没有关联点.例如,若整式A=2x2﹣5x+4,则a=0,b=2,c=﹣5,d=4,故A的关联点为(6,1).(1)若A=x3+x2﹣2x+4,则A的关联点坐标为.(2)若整式B是只含有字母x的整式,整式C是B与(x﹣2)(x+2)的乘积,若整式C的关联点为(6,﹣3),求整式B的表达式.(3)若整式D=x﹣3,整式E是只含有字母x的一次多项式,整式F是整式D与整式E的平方的乘积,若整式F的关联点为(﹣200,0),请直接写出整式E的表达式.【考点16在阅读理解中整式的乘除的运用】【例16】(2022秋·河南南阳·八年级校联考期末)阅读下列材料,完成后面的任务.完全平方公式的变形及其应用我们知道,完全平方公式有:a+b2=a在解题过程中,根据题意,若将公式进行变形,则可以达到快速求解的目的,其变形主要有下列几种情形:①a2+b2=④ab=1根据上述公式的变形,可以迅速地解决相关问题.例如:已知x+y=3,x−y=1,求x2解:x2任务:(1)已知x+y=5,x−y=3,则xy=______.(2)已知x+y=7,x2+y【变式16-1】(2022秋·重庆九龙坡·八年级统考期末)我们知道整数a除以整数b(其中a>b>0所以68÷13=5…3.类比此方法,多项式除以多项式一般也可以用竖式计算,步骤如下:①把被除式,除式按某个字母作降幂排列,并把所缺的项用零补齐;②用被除式的第一项除以除式第一项,得到商式的第一项;③用商式的第一项去乘除式,把积写在被除式下面(同类对齐),消去相等项;④把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止,被除式=除式×商式+余式,若余式为零,说明这个多项式能被另一个多项式整除.例如:计算(6x可用整式除法如图:所以6x4-7x3根据阅读材料,请回答下列问题:(1)(x3(2)(6x3+14x2(3)若关于x的多项式2x3+ax2+bx-3能被三项式x【变式16-2】(2022秋·福建泉州·八年级统考期末)阅读理解:若x满足(80﹣x)(x﹣60)=30,求(80﹣x)2+(x﹣60)2的值.解:设80﹣x=a,x﹣60=b,则(80﹣x)(x﹣60)=ab=30,a+b=(80﹣x)+(x﹣60)=20,∴(80﹣x)2+(x﹣60)2=a2+b2=(a+b)2﹣2ab=202﹣2×30=340.解决问题(1)若x满足(20﹣x)(x﹣10)=﹣10,求(20﹣x)2+(x﹣10)2的值;(2)若x满足(2022﹣x)2+(2022﹣x)2=4048,求(2022﹣x)(2022﹣x)的值.【变式16-3】(2022秋·宁夏固原·八年级统考期末)阅读理解题:定义:如果一个数的平方等于-1,记为i2=−1,这个数i叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为a+bi(a,b为实数),a叫这个复数的实部,专题7.1整式的乘除十六大必考点【北师大版】TOC\o"1-3"\h\u【考点1幂的基本运算】 1【考点2幂的逆运算】 3【考点3利用幂的运算进行比较大小】 5【考点4幂的混合运算】 8【考点5利用幂的运算进行简便计算】 10【考点6幂的运算中的新定义问题】 12【考点7整式的乘法】 16【考点8整式乘法的应用】 19【考点9利用乘法公式求值】 22【考点10乘法公式的几何背景】 26【考点11整式乘除的计算与化简】 32【考点12整式混合运算的应用】 34【考点13利用完全平方公式或平方差公式进行证明】 40【考点14整式的乘除的规律探究】 43【考点15整式乘法的新定义问题】 48【考点16在阅读理解中整式的乘除的运用】 53【考点1幂的基本运算】【例1】(2022·湖南娄底·七年级期中)如果a2n−1an+5=aA.4 B.5 C.6 D.7【答案】D【分析】利用同底数幂的乘方的法则对式子进行整理,即可得到关于n的方程,即可求解.【详解】∵a2n-1an+5=a16,∴a2n-1+n+5=a16,即a3n+4=a16,∴3n+4=16,解得:n=4.【点睛】本题主要考查同底数幂的乘法,解答的关键是熟记同底数幂的乘法的法则.【变式1-1】(2022·广东·德庆县德庆中学七年级期中)解答下列问题:(1)已知3m=5,3n(2)若3x+4y−3=0,求27x【答案】(1)1500;(2)27【分析】(1)先逆用积的乘方和幂的乘方运算法则,然后将已知代入即可解答;(1)先由3x+4y−3=0得3x+4y=3,然后逆用积的乘方和幂的乘方运算法则将【详解】解:(1)∵3m=5,∴33m+2n+1(2)∵3x+4y−3=0,∴3x+4y=3,∴27x【点睛】本题考查了积的乘方和幂的乘方法则的逆用,灵活应用相关运算法则是解答本题的关键.【变式1-2】(2022·安徽合肥·七年级期中)已知3x=4,3y=6,3z=12,则A.xy=2z B.x+y=2z C.x+2y=2z D.x+2y=z【答案】A【分析】根据幂的乘方和积的乘方运算法则进行计算,从而作出判断.【详解】∵3x∴3x∵(3∴3x+2y∴x+2y=2z【点睛】本题考查幂的运算,掌握幂的乘方(am)【变式1-3】(2022·黑龙江·大庆市第十九中学七年级期中)已知5a=2b=10,那么aba+b【答案】1【分析】将题目中所给的式子进行化简和构造,根据同底数幂的乘法以及积的乘方证明ab=a+b即可.【详解】∵5a=10,2b=10∴(5a)b=10b

,(2b)a=10a;即5ab=10b

,2ab=10a∴5ab×2ab=10ab=10b×10a=10a+b即a+b=ab∴aba+b故答案为1.【点睛】本题考查了同底数幂的乘法,有理数的乘方,积的乘方.【考点2幂的逆运算】【例2】(2022·四川·渠县流江初级实验中学七年级期中)如果3a=5,3b=10,那么9a−b的值为(

A.12 B.14 C.18【答案】B【分析】逆用幂的乘方及同底数幂的除法即可完成.【详解】9【点睛】本题考查了幂的乘方的逆用及同底数幂的除法的逆用,用好这两个运算性质是关键.【变式2-1】(2022·安徽·合肥新华实验中学七年级期中)如果2m=5,(1)2m+2n(2)8m【答案】(1)45(2)125【分析】(1)根据同底数幂的乘法的逆运算和幂的乘方的逆运算将原始变形为2m×(2n(2)根据幂的乘方的运算法则求解即可.(1)解:∵2m=5,∴2m+2n(2)解:∵2m=5,∴8m【点睛】本题主要考查了幂的乘方、同底数幂的乘法等知识,熟练掌握幂的乘方的逆运算和同底数幂的乘法的逆运算是解题关键.【变式2-2】(2022·北京昌平·七年级期中)将幂的运算逆向思维可以得到am+n=am⋅an(1)52021(2)若3×9m×【答案】(1)1(2)2【分析】(1)根据am(2)根据3×9m×(1)解:由题意知,52021故答案为:1.(2)解:∵3×9∴1+2m+3m=11,解得m=2,∴m的值为2.【点睛】本题考查了幂的乘方、积的乘法的逆运算,同底数幂的乘法.解题的关键在于对运算法则的熟练掌握与灵活运用.【变式2-3】(2022·四川省渠县中学七年级期中)(1)已知4m=a,8n=b,用含a,b的式子表示下列代数式:①求:22m+3n②求:22m−6n(2)已知2×8x×16=223,求x的值.【答案】(1)①ab;②ab2;(2)【分析】(1)①根据题意分别将4m,8n化为底数为2的形式,然后代入求解;②根据题意分别将4m,8n化为底数为2的形式,然后代入求解;(2)由题意将8x化为23x,将16化为24,列出方程求出x的值.【详解】解:(1)∵4m=a,8n=b,∴22m=a,①22m+3n②22m−6n(2)∵2×8x×16=223,∴2×(23)x×24=223,∴2×23x×24=223,即23x+5=223∴3x+5=23,解得:x=6.【点睛】本题考查同底数幂的除法的逆运算以及幂的乘方的逆运算和积的乘方的逆运算,熟练掌握相关的运算法则是解答本题的关键.【考点3利用幂的运算进行比较大小】【例3】(2022·福建省罗源第二中学八年级期中)若a=3555,b=4444,c=5333,比较a、b、c的大小(

)A.a>b>c B.b>a>c C.c>a>b D.c>b>a【答案】B【分析】根据幂的乘方的性质,得3555=243111,【详解】3555=35∵256>243>125∴256∴4444>3555>5【点睛】本题考查了幂的乘方的知识;解题的关键是熟练掌握幂的乘方的性质,从而完成求解.【变式3-1】(2022·江苏·江阴市华士实验中学七年级期中)阅读下列材料:若a3解:因为a15=a所以a>b.解答下列问题:(1)上述求解过程中,逆用了哪一条幂的运算性质_A.同底数幂的乘法

B.同底数幂的除法

C.幂的乘方

D.积的乘方(2)已知x5【答案】>(1)C

(2)x<y【分析】(1)根据幂的乘方进行解答即可;(2)根据题目所给的求解方法,进行比较.【详解】∵a15=所以a>b,故答案为>;(1)上述求解过程中,逆用了幕的乘方,故选C;(2)∵x∴x∴x<y.【点睛】本题考查了幂的乘方和积的乘方,根据题目所给的运算方法进行比较是解题的关键.【变式3-2】(2022·内蒙古·赤峰市松山区大庙中学八年级期中)阅读探究题:.【阅读材料】比较两个底数大于1的正数幂的大小,可以在底数(或指数)相同的情况下,比较指数(或底数)的大小,如:25>在底数(或指数)不相同的情况下,可以化相同,进行比较,如:2710与3解:2710=33[类比解答]比较254,125[拓展拔高]比较3555,4444,【答案】【类比解答】254<125【分析】【类比解答】可以将底数都化为5,利用幂的乘方的逆运算法则变形后再进行比较;【拓展拔高】观察三个式子的特点,可以利用幂的乘方逆运算法则将指数都变形为111,再进行比较.【详解】【类比解答】解:254=(∵8<9,∴58<5【拓展拔高】解:∵3555=(35又∵35=243,44∴53∴5333【点睛】本题考查了幂的运算性质,正确理解题意、灵活应用幂的乘方逆运算法则是解题的关键.【变式3-3】(2022·河北石家庄·七年级期中)阅读:已知正整数a,b,c,若对于同底数,不同指数的两个幂ab和ac(a≠1),当b>c时,则有ab>ac;若对于同指数,不同底数的两个幂ab和c(1)比较大小:520______420,961(2)比较233与3(3)比较312×5【答案】(1)>,<(2)233<(3)312×【分析】(1)根据“同指数,不同底数的两个幂ab和cb,当a>c时,则有ab>cb,”即可比较520和420的大小;根据“对于同底数,不同指数的两个幂ab和ac(a≠1),当(2)据“对于同底数,不同指数的两个幂ab和ac(a≠1),当b>c时,则有ab>a(3)利用作商法,即可比较312×5(1)解:∵5>4,∴520>4∵961=(∴961<27故答案为:>,<;(2)解:∵233=(∴233<3(3)解:∵312∴312×5【点睛】本题考查了幂的乘方与积的乘方及有理数大小比较,掌握幂的乘方与积的乘方的法则是解决问题的关键.【考点4幂的混合运算】【例4】(2022·福建漳州·七年级期中)计算(1)(m−n)2(2)((3)(a(4)(−4【答案】(1)n−m9;(2)b13n−5;(3)4【分析】(1)根据同底数幂的乘法法则计算即可;(2)根据幂的乘方法则以及同底数幂的乘法、同底数幂的除法法则计算即可;(3)根据积的乘法、幂的乘方运算法则以及合并同类项法则解答即可;(4)根据幂的乘方法则以及同底数幂的乘法、同底数幂的除法法则计算即可.【详解】解:(1)m−n==(2)b===b(3)a==4a(4)−4=−64=−8【点睛】本题主要考查了积的乘方、幂的乘方运算法则、同底数幂的乘法、同底数幂的除法法则以及合并同类项法熟记幂的运算法则是解答本题的关键.【变式4-1】(2022·陕西西安·七年级期中)计算:2x【答案】3【分析】直接利用合并同类项法则以及积的乘方运算法则分别判断得出答案.【详解】解:原式=4x【点睛】本题主要考查了合并同类项以及积的乘方运算,正确掌握相关运算法则是解题关键.【变式4-2】(2022·重庆市第十一中学校七年级期中)计算:(1)x⋅x(2)(−4a【答案】(1)0;(2)−64a【分析】(1)利用同底数幂的乘法法则、幂的乘方法则即可求解;(2)利用积的乘方法则、同底数幂的乘法法则即可求解.(1)解:原式=x=2=0;(2)解:原式=−64=−64a【点睛】本题主要考查了同底数幂的乘法法则、幂的乘方法则、积的乘方法则,合并同类项,熟练掌握相应的计算法则是解题的关键.【变式4-3】(2022·黑龙江·巴彦县第一中学八年级期中)计算:(1)x2(2)−2a【答案】(1)-3x【分析】(1)根据同底数幂的乘法,幂的乘方以及整式的加减计算法则进行求解即可;(2)根据积的乘方,以及整式的加减计算法则进行求解即可.【详解】(1)原式==−3x(2)原式=64=64=−9a【点睛】本题主要考查了同底数幂的乘方,幂的乘方,积的乘方以及整式的加减计算,解题的关键在于能够熟练掌握相关计算法则.【考点5利用幂的运算进行简便计算】【例5】(2022·黑龙江·哈尔滨市虹桥初级中学校七年级期中)计算0.25100【答案】-4【分析】将式子转化为14【详解】解:原式=14故答案为:−4.【点睛】本题考查了积的乘方的逆运算,掌握积的乘方的运算法则是解题的关键.【变式5-1】(2022·湖南怀化·七年级期中)计算(﹣0.25)2022×42021的结果是(

)A.﹣1 B.1 C.0.25 D.44020【答案】A【分析】根据积的乘方的逆运算法则计算即可.【详解】原式=【点睛】本题考查积的乘方的逆运算,熟练掌握运算法则是解题的关键.【变式5-2】(2022·上海杨浦·七年级期中)用简便方法计算:−【答案】500000【分析】根据积的乘方即可求出答案.【详解】原式==(3×【点睛】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.【变式5-3】(2022·福建·泉州市第九中学八年级期中)阅读:已知正整数a、b、c,显然,当同底数时,指数大的幂也大,若对于同指数,不同底数的两个幂ab和cb,当a>c时,则有(1)比较大小:520_________4(2)比较233与3(3)计算42021【答案】(1)>(2)2(3)-4【分析】(1)根据“对于同指数,不同底数的两个幂ab和cb,当a>c时,则有(2)将233与3(3)首先将42021和0.252020化为指数相同的幂,将82021(1)解:由题意,对于同指数,不同底数的两个幂ab和cb,当a>c时,则有可知520故答案为:>;(2)∵233=(又∵811∴233(3)原式=4×=4×(4×0.25)=4×=4−8=−4.【点睛】本题主要考查积的乘方的逆运算、幂的大小的比较以及有理数的混合运算等知识,解答的关键是熟练掌握相关的运算法则.【考点6幂的运算中的新定义问题】【例6】(2022·山东省青岛第五十一中学七年级期中)阅读材料:定义:如果10a=n,那么称a为n的劳格数,记为例如:102=100,那么称2是100的劳格数,记为填空:根据劳格数的定义,在算式a=d1000中,______相当于定义中的n,所以d直接写出d10探究:某数学研究小组探究劳格数有哪些运算性质,以下是他们的探究过程若a、b、m、n均为正数,且10a=p,根据劳格数的定义:dp=a,∵10∴10a+b=pq,这个算式中,______相当于定义中的a,______相当于定义中的∴dpq=______,即请你把数学研究小组探究过程补全拓展:根据上面的推理,你认为:dm【答案】1000,3;﹣8;b,a+b,10a+b,a+b;dm-【分析】根据新定义法则进行运算即可.【详解】解:∵如果10a=n,那么称a为n的劳格数,记为∴103=1000,那么称3是1000的劳格数,记为∴在算式a=d1000中,1000相当于定义中的n,所以d1000∵10b∴b=dq∵10a=p,∴10a⋅10∴这个算式中,pq相当于定义中的a,10a+b相当于定义中的n∴d(pq)=d10a+b=a+b=d即dpq设10a=m,∴dm=a,∵10a−b∴dmn=d10a−b=a-b即dmn=d故答案为:1000,3;﹣8;b,a+b,10a+b,a+b;dm-【点睛】此题考查了新定义问题,用到了幂的相关运算,解题的关键是理解新定义及其运算法则.【变式6-1】(2022·北京·清华附中八年级期中)定义一种新运算a,b,若ac=b,则a,b=c,例2【答案】35【分析】设3m=5,3n=7,根据新定义运算的法则可知3,【详解】设3m=5,3n∴m+n=(3,∴3m+n∵3m+n∴x=35.故答案为:35.【点睛】本题考查新定义下的运算,同底数幂乘法的逆用.理解题意,掌握新定义下的运算法则是解题关键.【变式6-2】(2022·江苏连云港·七年级期中)阅读下列材料:小明为了计算1+2+2设S=1+2+2则2S=2+2②−①得,2S−S=S=2请仿照小明的方法解决以下问题:(1)2+2(2)求1+1(3)求−2+(4)求a+2a2+3a3【答案】(1)221−2;(2)2-1250;(3)2101−2【分析】(1)根据阅读材料可得:设s=2+22+⋅⋅⋅+220①,则2s=22+23(2)设s=1+12+122(3)设s=−2+−22+⋅⋅⋅+−2(4)设s=a+2a2+3a3+⋅⋅⋅+nan①,as=a2+2a【详解】解:根据阅读材料可知:(1)设s=2+22s=22+23+…+220+221②,②−①得,2s−s=s=221−2;故答案为:221−2;(2)设s=1+112s=1②−①得,12s−s=-12s=∴s=2-12故答案为:2-12(3)设s=−2+-2s=−22②−①得,-2s−s=-3s=−2101∴s=2101(4)设s=a+2aas=a2②-①得:as-s=-a-a2设m=-a-a2am=-a2④-③得:am-m=a-an+1∴m=a−a∴as-s=a−an+1a−1∴s=a−an+1a−1【点睛】本题考查了规律型−实数的运算,解决本题的关键是理解阅读材料进行计算.【变式6-3】(2022·山东德州·八年级期中)一般地,n个相同的因数a相乘a•a•…•a,记为an;如2×2×2=23=8,此时3叫做以2为底8的对数,记为log28(即log28=3),一般地,若an=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为logab(即logab=n),如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算下列各对数的值:log24=;log216=;log264=;(2)你能得到log24、log216、log264之间满足怎样的关系式:;(3)由(2)的结果,请你归纳出logaM、logaN、logaMN之间满足的关系式:;(4)根据幂的运算以及对数的含义验证(3)的结论.【答案】(1)2,4,6;(2)log24+log216=log264;(3)logaM+logaN=loga(MN),(4)验证见解析.【分析】(1)根据对数的定义即可求得值;(2)根据(1)的结果即可得出三者间的关系;(3)根据(2)的结果即可得出三者满足的关系式;(4)根据对数的意义及同底数幂的乘法即可证明.【详解】(1)∵2∴log24=2∵2∴log216=4∵2∴log264=6故答案为:2,4,6(2)由(1)知,log24+log216=log264故答案为:log24+log216=log264(3)由(2)的结果知:logaM+logaN=logaMN故答案为:logaM+logaN=logaMN(4)设logaM=m,logaN=n由对数的定义知,am=M∵a∴m+n=∵logaM+logaN=m+n∴logaM+logaN=logaMN【点睛】本题是材料阅读题,考查了同底数幂的运算,乘方的计算等知识,关键是读懂材料中对数的含义.【考点7整式的乘法】【例7】(2022·福建·大同中学八年级期中)计算2x+3y−42x+ay+b得到的多项式不含x、y的一次项,其中a,b是常数,则a−b的值为(

A.1 B.−1 C.−7 D.7【答案】B【分析】先利用多项式与多项式乘法法则,展开后合并同类项,再令含x、y的一次项的系数均为零,列方程组求解即可得到答案.【详解】解:2x+3y−4=4=4∵展开后多项式不含x、y的一次项,∴2b−8=0∴a=3∴a−b=−1,故选B.【点睛】此题考查了多项式与多项式的乘法,熟练掌握多项式与多项式乘法法则、合并同类项、“不含某一项则某一项的系数为零”的性质,是解答此题的关键.【变式7-1】(2022·江西景德镇·七年级期中)小邢同学在计算(x+a)(x+b)中的“b”看成了“6”,算的结果为x2+3x−18,而且小颖同学在计算(x+a)(x+b)时将“+a”看成了“−a”,算的结果为(1)求出a、b的值;(2)计算出(x+a)(x+b)的正确结果,【答案】(1)a=-3,b=-4(2)x2-7x+12【分析】(1)根据题意得出(x+a)(x+6)=x2+(6+a)x+6a=x2+3x-18,(x﹣a)(x+b)=x2+(﹣a+b)x﹣ab=x2-x﹣12,得出6+a=3,﹣a+b=-1,求出a、b即可;(2)把a、b的值代入,再根据多项式乘以多项式法则求出即可.【详解】(1)根据题意得:(x+a)(x+6)=x2+(6+a)x+6a=x2+3x-18,(x﹣a)(x+b)=x2+(﹣a+b)x﹣ab=x2所以6+a=3,﹣a+b=-1,解得:a=-3,b=-4;(2)当a=-3,b=-4时,(x+a)(x+b)=(x-3)(x-4)=x2-7x+12.【点睛】本题考查了多项式乘以多项式法则和解方程,能正确运用多项式乘以多项式法则进行计算是解此题的关键.【变式7-2】(2022·江苏·扬州市江都区第三中学七年级期中)我国南宋数学家杨辉用“三角形”解释二项和的乘方规律,称之为“杨辉三角”,这个“三角形”给出了(a+b)n(n=1,1

1

(a+b)1

2

1

(a+b)1

3

3

1

(a+b)1

4

6

4

1

(a+b)……

……请依据上述规律,写出(x−2x)2022展开式中含A.2022 B.−4044 C.−2020 D.4042【答案】B【分析】首先确定x2020【详解】解:由题意:,(x−2=x可知,(x−2x)∴(x−2x)故选B.【点睛】本题考查杨辉三角,解题的关键是灵活运用杨辉三角的规律解决问题.【变式7-3】(2022·全国·八年级专题练习)设a1,a2,a3,⋯a【答案】M>N.【分析】设a2+a3+…+a2021=m,代入M、N中化简后比较即可.【详解】解:设a2+a3+…+a2021=m,则M=(a1+m)(m+a2022)=a1m+m2+a2022m+a1a2022,N=(a1+m+a2022)m=a1m+m2+a2022m,M-N=a1a2022,∵a1,a2,…,a2022都是正数,∴a1a2022>0,∴M-N>0,∴M>N.【点睛】本题考查了整式乘法的混合运算,规律型:数字的变化类,设a2+a3+…+a2021=m,利用多项式乘多项式的法则计算出M、N是解题的关键.【考点8整式乘法的应用】【例8】(2022·浙江宁波·七年级期中)如图①,现有边长为b和a+b的正方形纸片各一张,长和宽分别为b、a的长方形纸片一张,其中a<b.把纸片I、III按图②所示的方式放入纸片II内,已知图②中阴影部分的面积满足S1=8S2,则a,A.3b=4a B.2b=3a C.3b=5a D.b=2a【答案】D【分析】用含a,b的代数式表示出S1,S2,即可得出答案.【详解】由题意可得:S1=(a+b)2-b2-a2=2ab,S2=(b-a)a=ab-a2,∵S1∴2ab=8(ab-a2),∴2ab=8ab-8a2∴b=4b-4a∴4a=3b,【点睛】本题考查了整式的混合运算,用含a,b的代数式表示出S1,S2是解题关键.【变式8-1】(2022·山东泰安·期中)如图①所示,在一个边长为a的正方形纸片上剪去两个小长方形,得到一个如图②的图案,再将剪下的两个小长方形拼成一个新的长方形,如图③所示,则新长方形的面积可表示为__________.【答案】a【分析】根据图形表示出新长方形的长与宽,即可确定出面积.【详解】解:根据题意得:新长方形的长为a−b,宽为a−3b,则新长方形面积为a−ba−3b故答案为:a2【点睛】本题考查了列代数式及整式的加减,明确题意,列出相应的代数式是解本题的关键.【变式8-2】(2022·安徽·宿城第一初级中学七年级期中)如图,一个长方形中剪下两个大小相同的正方形(有关线段的长如图所示)留下一个“T”型的图形(阴影部分)(1)用含x,y的代数式表示“T”型图形的面积并化简.(2)若y=3x=30米,“T”型区域铺上价格为每平方米20元的草坪,请计算草坪的造价.【答案】(1)2(2)34000元【分析】(1)利用大长方形的面积减去两个小正方形的面积可得“T”型图形的面积,再根据整式的乘法与加减法法则进行化简即可得;(2)根据y=3x=30米可得x=10米,代入(1)中的结论可得“T”型图形的面积,再根据草坪每平方米20元即可得.【详解】(1)解:“T”型图形的面积=2x+y=2=2x答:“T”型图形的面积为2x(2)解:由y=3x=30米得:x=10米,则“T”型图形的面积=2x所以草坪的造价为1700×20=34000(元),答:草坪的造价为34000元.【点睛】本题考查了多项式乘以多项式以及合并同类项的应用,根据图形正确列出代数式是解题关键.【变式8-3】(2022·浙江·余姚市舜水中学七年级期中)如图,长为10,宽为x的大长方形被分割成7小块,除阴影部分A,B外,其余5块是形状、大小完全相同的小长方形,其较短一边长为y.(1)由图可知,每个小长方形较长一边长为________.(用含y的代数式表示)(2)分别用含x,y的代数式表示阴影部分A,B的面积.(3)当y取何值时,阴影部分A与阴影部分B的面积之差与x的值无关?并求出此时阴影部分A与阴影部分B的面积之差.【答案】(1)10−2y(2)S(3)当y=52时,阴影部分A与阴影部分B的面积之差与x【分析】(1)由图形可直接填空;(2)由长方形面积公式结合图形即可解答;(3)计算出S阴影部分A−S阴影部分B=2y2−10y−x4y−10,即得出当4y−10=0时,阴影部分A(1)由图可知每个小长方形较长一边长为10−2y.故答案为:10−2y;(2)S阴影部分S阴影部分(3)S阴影部分A∵2y2∴当4y−10=0时,阴影部分A与阴影部分B的面积之差与x的值无关,解得:y=5∴S阴影部分【点睛】本题主要考查列代数式,整式混合运算的应用.利用数形结合的思想是解题关键.【考点9利用乘法公式求值】【例9】(2022·江苏·扬州市邗江区实验学校七年级期中)若x2+(k﹣1)x+9是一个完全平方式,则k值为_____.【答案】7或﹣5【分析】这里首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3的积的2倍,故k﹣1=±6.【详解】解:∵(x±3)2=x2±6x+9=x2+(k﹣1)x+9,∴k﹣1=±6,解得k=7或﹣5.故答案为:7或﹣5.【点睛】本题考查完全平方式,熟练掌握完全平方公式的运用是解题的关键.【变式9-1】(2022·湖南株洲·七年级期中)已知a﹣b=2,a2+b2=20,则ab值是()A.﹣8 B.12 C.8 D.9【答案】A【分析】先求出(a-b)2,然后将a2+b2=20代入即可求得ab.【详解】解:∵(a-b)2=a2+b2-2ab=4,a2+b2=20∴20-2ab=4,解得:ab=8.【点睛】本题主要考查了运用完全平方公式变形求值,灵活应用完全平方公式和整体代入思想成为解答本题的关键.【变式9-2】(2022·湖北武汉·八年级期中)如图,正方形的边长为m+5,面积记为S1,长方形的两边长分别为m+3,m+9,面积记为S2(其中m为正整数).若某个图形的面积S介于S1,S2之间(不包括S1,S2),S的整数值有且只有15个,则m=_______.【答案】7【分析】先根据正方形和长方形的面积公式计算出S1和S2,由此可得S2﹣S1=2m+2,再根据S介于S1,S2之间(不包括S1,S2),S的整数值有且只有15个可得2m+2=16,由此即可求得答案.【详解】解:∵S1=(m+5)2=m2+10m+25,S2=(m+9)(m+3)=m2+12m+27,∴S2﹣S1=(m2+12m+27)﹣(m2+10m+25)=2m+2,∵m为正整数,∴S2与S1都是正整数,∵某个图形的面积S介于S1,S2之间(不包括S1,S2),S的整数值有且只有15个,∴2m+2=16,解得:m=7,故答案为:7.【点睛】本题考查完全平方公式、多项式乘多项式法则以及整式加减等相关知识,能够根据题意得到2m+2=16是解决本题的关键.【变式9-3】(2022·江苏镇江·七年级期中)阅读下列材料:教科书中这样写道:“我们把多项式a2+2ab+b2及a2−2ab+b2叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.即将多项式x2+bx+c(【知识理解】(1)若多项式x2+kx+16是一个完全平方式,那么常数k的值为(A.4

B.8

C.±8

D.±16(2)若多项式x2+4x+m是一个完全平方式,那么常数(3)配方:x2−6x−10=x−3【知识运用】(4)通过配方发现,代数式x2(5)利用配方法因式分解:a2+2a−3=a(6)已知m2+2mn+2n2−8n+16=0(7)若M=a+1a−3,N=2a−1a−2,则【答案】(1)C(2)4(3)19,(x+1)(4)3(5)1,(a+3)(a−1)(6)−4,4(7)<【分析】(1)直接利用完全平方公式求解即可;(2)直接利用完全平方公式求解即可;(3)利用配方法求解即可得;(4)利用配方法求解即可得;(5)先利用配方法计算,然后利用平方差公式因式分解;(6)先利用配方法计算,然后利用平方的非负性求解即可;(7)利用两个整式作差即可比较大小.【详解】(1)解:x∴k=±2×4=±8,故选:C(2)x2∴m=4,故答案为:4;(3)x2x2故答案为:19;x+12(4)x2∵x−22∴x−22故答案为:3;(5)a====(a+3)(a−1)故答案为:1;(a+3)(a−1)(6)m2m2(m+n)2∴m+n=0且n−4=0,解得:n=4,m=-4,故答案为:-4;4;(7)M-N=(a+1)(a−3)-2(a−1)(a−2)=a=a=−a=−(a−2)∴M<N,故答案为:<.【点睛】题目主要考查完全平方公式的计算及配方法、多项式的大小比较、因式分解等,熟练掌握整式的运算法则是解题关键.【考点10乘法公式的几何背景】【例10】(2022·四川·金堂县淮口中学校七年级期中)用两种不同方法计算同一图形的面积,可以得到一个等式,如图1,是用长为x,宽为y(xy)的四个全等长方形拼成一个大正方形,用两种不同的方法计算阴影部分(小正方形)的面积,可得到(x−y)2、(x+y)2、利用上面所得的结论解答:(1)已知xy,x+y=3,5xy=54,求x-y(2)已知|a+b−4|+(ab−2)2=0,求a3+b3值.备注:a3+b3=(a+b)(a2-ab+【答案】(x−y【分析】根据正方形的面积两种计算方法,一种是边长的平方,一种是大正方形减去四个长方形的面积,即可得到等式;根据正方体的体积的两种算法得到等式,一种是棱长的立方,一种是小正方体和长方体的和计算;(1)将条件代入等式计算即可;(2)中先从条件中得到a+b=4,ab=2,然后将其代入等式计算即可.【详解】解:如图1,方法一:已知边长直接求面积为(x−y方法二:阴影部分面积是大正方形的面积减去四个长方形的面积,所以面积为(x+y)∴等量关系式为:(x−y故答案为:(x−y如图2,方法一:已知棱长直接求体积为(a+b方法二:正方体的体积是长方体和小正方体的体积和,即a3∴等量关系式为:(a+b故答案为:(a+b(1)将x+y=3,xy=54代入得(x−y∵x>y,∴x﹣y=2.(2)∵|a+b−4|+(∴a+b=4,ab=2,将其代入(a+b即64=∴a3+b3=【点睛】本题主要利用图象探究式的等量关系,要结合图象分析,后面是等量关系的应用,先分析适用于等量关系的条件然后代入计算即可.【变式10-1】(2022·河南南阳·八年级期中)探究活动:(1)如图①,可以求出阴影部分的面积是_____(写成两数平方差的形式);(2)如图②,若将图①中阴影部分裁剪下来,重新拼成一个长方形,面积是_____(写成多项式乘法的形式);(3)比较图①,图②阴影部分的面积,可以得到公式_____.(4)知识应用:运用你得到的公式解决以下问题:计算:(a+b﹣2c)(a+b+2c);(5)若4x2−9y2=10,4x+6y【答案】(1)a(2)(a+b)(a﹣b)(3)a2−b2=(a+b)((4)a(5)2x﹣3y的值为5【分析】(1)用大正方形的面积减去小正方形的面积即可;(2)根据长方形面积公式解答即可;(3)由(1)、(2)即可得到公式;(4)根据平方差公式,得到a+b2(5)将4x2−9y2=10,化为(2x+3y)(2x-3y)=0的形式,再由4x+6y(1)S阴故答案为:a2(2)拼成的长方形的长为(a+b),宽为(a﹣b),∴S阴故答案为:a+ba−b(3)由(1)、(2)可得,a2−b2=(a+b)(故答案为:a2−b2=(a+b)((4)原式=[(a+b)﹣2c][(a+b)+2c]=a+b2=a2(5)4x2−9y2=(2x+3y∵4x+6y=4,∴2x+3y=2,∴2x﹣3y=10÷2=5,故2x﹣3y的值为5.【点睛】此题考查了平方差公式的几何背景,用不同方法表示同一个图象的面积是解决问题的关键.【变式10-2】(2022·福建·明溪县教师进修学校七年级期中)阅读理解:若x满足210−xx−200=−204,试求解:设210−x=a,x−200=b,则ab=−204,且a+b=(210-x)+(∵a+b2∴a2+b2=解决问题(1)若x满足2022−xx−2010=22,则2022−x(2)若(2022-x)2+(x-2002)2=2020,求2022−xx−2002(3)如图,在长方形ABCD中,AB=10,BC=6,点E,F分别是BC,CD上的点,且BE=DF=x,分别以FC,CE为边在长方形ABCD外侧作正方形CFGH和CEMN,若长方形CEPF的面积为40平方单位,则图中阴影部分的面积和为多少?【答案】(1)100(2)−810(3)96【分析】(1)根据材料解法,设2022−x=a,x−2010=b,则ab=22,且a+b=(2022-x)+(x-2010)=12,根据(2)根据材料解法,设2022−x=a,x−2002=b,则a+b=(2022-x)+(x-2002)=20,根据a+b2(3)由图及题中条件得到正方形CFGH的边长为10−x,正方形CEMN的边长为6−x,由长方形CEPF的面积为40平方单位得到10−x6−x(1)解:设2022−x=a,x−2010=b,则ab=22,且a+b=(2022-x)+(∵a+b2∴a2+b2=(2)解:设2022−x=a,x−2002=b,则a+b=(2022-x)+(∵a+b2∴a2+b2=a+b2(3)解:由图及题中条件可知正方形CFGH的边长为10−x,正方形CEMN的边长为6−x,则由长方形CEPF的面积为40平方单位得到10−xx−6∴阴影部分面积为10−x2设10−x=a,x−6=b,则ab=−40,且a+b=(10-x)+(∵a+b2∴10−x2∵a2∴阴影部分面积为96.【点睛】本题考查对完全平方公式几何意义的应用能力,读懂题意,掌握材料中的解法,结合图形进行完全平方公式的灵活运用是解决问题的关键.【变式10-3】(2022·湖南·常德市第二中学七年级期中)(1)①如图1,已知正方形ABCD的边长为a,正方形FGCH的边长为b,长方形ABGE和EFHD为阴影部分,则阴影部分的面积是______(写成平方差的形式);②将图1中的长方形ABGE和EFHD剪下来,拼成图2所示的长方形,则长方形AHDE的面积是______(写成多项式相乘的形式);(2)比较图1与图2的阴影部分的面积,可得乘法公式______.(3)利用所得公式计算:2【答案】(1)①a2−b2;②【分析】(1)①根据图1确定出阴影部分面积即可;②根据图2确定出长方形面积即可;(2)根据两图形面积相等得到乘法公式;(3)利用得出的平方差公式计算即可得到结果.【详解】解:(1)①∵正方形ABCD的面积是a2,正方形FGCH的面积是b∴阴影部分的面积是a2②由图2得:AH=AB+FH=a+b,AE=AD-DE=a-b,∴长方形AHDE的面积是(a+b)(a−b),故答案为:①a2−b(2)由(1)可得到(a+b)(a−b)=a故答案为:(a+b)(a−b)=a(3)原式=4×=4×(1−=4×(1−1=4−1=4.【点睛】此题考查了平方差公式的几何背景,熟练掌握平方差公式是解本题的关键.【考点11整式乘除的计算与化简】【例11】(2022·浙江·嵊州市马寅初初级中学七年级期中)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:×−1【答案】−6x+2y−1【分析】直接利用整式的除法运算法则计算得出答案.【详解】由题意可得,所捂多项式是:(3=3=−6x+2y−1.故答案为:−6x+2y−1.【点睛】本题主要考查了整式的除法,正确掌握相关运算法则是解题关键.【变式11-1】(2022·浙江·永嘉县崇德实验学校七年级期中)若定义表示3xyz3,表示-3adcA.-72n B.72n C.mn 【答案】D【分析】先根据定义列出代数式,然后再利用积的乘方、单项式除法解答即可.【详解】解:由题意可得:3mn⋅23÷-3故选A.【点睛】本题主要考查了整单项式除法运算,根据新定义列出整式是解答本题的关键.【变式11-2】(2022·山东淄博·期中)王老师给学生出了一道题:求2x+y2x−y+22x−y2+同学们看了题目后发表不同的看法.小明说:“条件y=−1是多余的.”小亮说:“不给y=−1这个条件,就不能求出结果,所以不多余.”(1)你认为他俩谁说的有道理?为什么?(2)若本题的结果等于M,试求M的值.【答案】(1)小明说的有道理,理由见解析;(2)3【分析】(1)对2x+y2x−y(2)由(1)可计算得的结果为3,即M的值为3.(1)解:小明说的有道理,理由如下:2x+y==4=12x∵化简得结果为12x2,12x∴条件y=−1是多余的,小明说的有道理;(2)当x=12时,∴M=3,即M的值为3.【点睛】此题考查了整式的混合运算,在化简求值时要特别注意去括号法则的运用.【变式11-3】(2022·重庆市万州第二高级中学八年级期中)已知a、b、c为实数,且多项式x3+ax2+bx+c能被多项式x2+3x-4整除,(1)求4a+c的值;(2)若a、b、c为整数,且c≥a>1,试确定a、b、c的值.【答案】(1)4a+c=12;(2)a=2;b=﹣7;c=4.【分析】(1)根据整除的定义,得到x2+3x﹣4=0,然后得到关于a、b、c的方程组,即可得到答案;(2)由于c≥a>1,又a=3−c4,可知1<3−c【详解】解:(1)∵x2+3x﹣4是x3+ax2+bx+c的一个因式,∴x2+3x﹣4=0,即x=﹣4,x=1是方程x3+ax2+bx+c=0的解,∴a+b+c=−1①16a−4b+c=64②①×4+②得4a+c=12③;(2)∵c≥a>1,又a=3−c∴a=3−c4<c,即1<解得:125又∵a、c是大于1的正整数,∴c=3、4、5、6、7,但a=3−c∴c=4,∴a=2,∴b=﹣4﹣34【点睛】本题考查的是多项式除以多项式,注意理解整除的含义,比如A被B整除,另外一层意思也就是说,B是A的一个因式,使这个因式B等于0的值,必是A的一个解.【考点12整式混合运算的应用】【例12】(2022·北京·八年级期中)随着某种产品的原料涨价,因而厂家决定对产品进行提价,设该产品原价为1元,现在有两种提价方案:方案1:第一次提价x%,第二次提价y%;方案2:第一次、二次提价均为x%+y%2其中x,y是不相等的正数,请判断在分别实施这两种方案后哪种方案最终价格更高?并用乘法公式证明.【答案】方案2最终价格更高,理由见解析.【分析】先表示出“最方案1最终价格-方案2最终价格”代数式表示,再利用整式的混合运算,化简整式,最后得−100+x【详解】解:方案2最终价格更高.理由如下:最方案1最终价格-方案2最终价格========∵x,y是不相等的正数∴−所以,两种方案后方案2最终价格更高.【点睛】题考查了列代数式、整式混合运算、乘法运算的应用,利用的方法为作差法,熟练掌握完全平方公式是解本题的关键.【变式12-1】(2022·重庆·八年级期中)近年来,重庆成为了众多游客前来旅游的网红城市.某商场根据游客的喜好,推出A、B两种土特产礼盒,A种礼盒内有3袋磁器口麻花,3包火锅底料;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论