版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ReviewQuestions
12.1-1 Thedecisionalternativesaretodrillforoilortoselltheland.
12.1-2 Theconsultinggeologistbelievesthatthereis1chancein4ofoilonthetractofland.
12.1-3 Maxdoesnotputmuchfaithintheassessment.
12.1-4 Adetailedseismicsurveyofthelandcouldbedonetoobtainmoreinformation.
12.1-5 Thepossiblestatesofnaturearethepossibleoutcomesoftherandomfactorsthataffectthepayoffthatwouldbeobtainedfromadecisionalternative.
12.1-6 Priorprobabilitiesaretheestimatedprobabilitiesofthestatesofnaturepriortoobtainingadditionalinformationthroughatestorsurvey.
12.1-7 Thepayoffsarequantitativemeasuresoftheoutcomesfromadecisionalternativeandastateofnature.Payoffsaregenerallyexpressedinmonetaryterms.
12.2-1 Themaximaxcriterionidentifiesthemaximumpayoffforeachdecisionalternativeandchoosesthedecisionalternativewiththemaximumofthesemaximumpayoffs.Themaximaxcriterionisfortheeternaloptimist.
12.2-2 Themaximaxciterioncompletelyignoresthepriorprobabilitiesandignoresallpayoffsexceptforthelargestone.
12.2-3 Themaximincriterionidentifiestheminimumpayoffforeachdecisionalternativeandchoosesthedecisionalternativewiththemaximumoftheseminimumpayoffs.Themaximincriterionisforthetotalpessimist.
12.2-4 Themaximincriterionignoresthepriorprobabilitiesandignoresallpayoffsexceptthemaximinpayoff.
12.2-5 Themaximumlikelihoodcriterionfocusesonthemostlikelystateofnature,theonewiththelargestpriorprobability.
12.2-6 Criticismsofthemaximumlikelihoodcriterioninclude:1)thiscriterionchoosesanalternativewithoutconsideringitspayoffsforstatesofnatureotherthanthemostlikelyone,2)foralternativesthatarenotchosen,thiscriterionignorestheirpayoffsforstatesofnatureotherthanthemostlikelyone,3)ifthedifferencesinthepayoffsforthemostlikelystateofnaturearemuchlessthanforanothersomewhatlikelystateofnature,thenitmightmakesensetofocusonthislatterstateofnatureinstead,and4)iftherearemanystatesofnatureandtheyarenearlyequallylikely,thentheprobabilitythatthemostlikelystateofnaturewillbethetrueoneisfairlylow.
12.2-7 Bayes’decisionrulesaystochoosethealternativewiththelargestexpectedpayoff.
12.2-8 Theexpectedpayoffiscalculatedbymultiplyingeachpayoffbythepriorprobabilityofthecorrespondingstateofnatureandthensummingtheseproducts.
12.2-9 CriticismsofBayes’decisionruleinclude:1)thereusuallyisconsiderableuncertaintyinvolvedinassigningvaluestopriorprobabilities,2)priorprobabilitiesinherentlyareatleastlargelysubjectiveinnature,whereassounddecisionmakingshouldbebasedonobjectivedataandprocedures,and3)byfocusingonaverageoutcomes,expectedpayoffsignoretheeffectthattheamountofvariabilityinthepossibleoutcomesshouldhaveonthedecisionmaking.
12.3-1 Adecisiontreeisagraphicaldisplayoftheprogressionofdecisionsandrandomeventstobeconsidered.
12.3-2 Adecisionnodeindicatesthatadecisionneedstobemadeatthatpointintheprocess.Aneventnodeindicatesthatarandomeventoccursatthatpoint.
12.3-3 Decisionnodesarerepresentedbysquareswhilecirclesrepresenteventnodes.
12.4-1 Sensitivityanalysismightbehelpfultostudytheeffectifsomeofthenumbersincludedinthemodelarenotcorrect.
12.4-2 Itassuresthateachpieceofdataisinonlyoneplaceanditmakesiteasyforanyonetointerpretthemodel,eveniftheydon’tunderstandTreePlanordecisiontrees.
12.4-3 Adatatabledisplaysresultsofselectedoutputcellsforvarioustrialvaluesofadatacell.
12.4-4 Ifthereislessthana23.75%chanceofoil,theyshouldsell.Ifit’smore,theyshoulddrill.
12.5-1 Perfectinformationmeansknowingforsurewhichstateofnatureisthetruestateofnature.
12.5-2 Theexpectedpayoffwithperfectinformationiscalculatedbymultiplyingthemaximumpayoffforeachalternativebythepriorprobabilityofthecorrespondingstateofnature.
12.5-3 Thedecisiontreeshouldbestartedwithachancenodewhosebranchesarethevariousstatesofnature.
12.5-4 EVPI=EP(withperfectinformation)–EP(withoutmoreinformation)
12.5-5 Ifthecostofobtainingmoreinformationismorethantheexpectedvalueofperfectinformationthenitisnotworthwhiletoobtainmoreinformation.
12.5-6 Ifthecostofobtainingmoreinformationislessthantheexpectedvalueofperfectinformationthenitmightbeworthwhiletoobtainmoreinformation.
12.5-7 IntheGoferbrokeproblemtheEVPI>Csoitmightbeworthwhiletodotheseismicsurvey.
12.6-1 Posteriorprobabilitiesarerevisedprobabilitiesofthestatesofnatureafterdoingatestorsurveytoimprovethepriorprobabilities.
12.6-2 Thepossiblefindingsarefavorablewithoilbeingfairlylikely,orunfavorablewithoilbeingquiteunlikely.
12.6-3 Conditionalprobabilitiesneedtobeestimated.
12.6-4 Thefivekindsofprobabilitiesconsideredareprior,conditional,joint,unconditional,andposterior.
12.6-5 P(stateandfinding)=P(state)*P(finding|state).
12.6-6 P(finding)=sumofP(stateandfinding)foreachstate.
12.6-7 P(state|finding)=P(stateandfinding)/P(finding).
12.6-8 Bayes’theoremisusedtocalculateposteriorprobabilities.
12.7-1 Adecisiontreeprovidesagraphicaldisplayoftheprogressionofdecisionsandrandomeventsforaproblem.
12.7-2 Adecisionneedstobemadeatadecisionnode.
12.7-3 Arandomeventwilloccurataeventnode.
12.7-4 Theprobabilitiesofrandomeventsandthepayoffsneedtobeinsertedbeforebeginninganalysis.
12.7-5 Whenperformingtheanalysis,startattherightsideofthedecisiontreeandmoveleftonecolumnatatime.
12.7-6 Foreacheventnode,calculateitsexpectedpayoffbymultiplyingthepayoffofeachbranchbytheprobabilityofthatbranchandthensummingtheseproducts.
12.7-7 Foreachdecisionnode,comparetheexpectedpayoffsofitsbranchesandchoosethealternativewhosebranchhasthelargestexpectedpayoff.
12.8-1 Consolidatethedataandresultsintoonesectionofthespreadsheet.
12.8-2 Performingsensitivityanalysisonapieceofdatashouldrequirechangingavalueinonlyoneplaceonthespreadsheet.
12.8-3 Adatatablecanconsiderchangesinonlyoneortwodatacells.
12.8-4 One.
12.8-5 Yes.Thespidergraphcanconsiderchangesinmanydatacellsatatime.
12.8-6 SensIt’sspidergraphassumesthateachdatavaluevariesbythesameamount.Sensit’stornadodiagramovercomesthislimitation.
12.9-1 Utilitiesareintendedtoreflectthetruevalueofanoutcometothedecision-maker.
12.9-2
12.9-3 Undertheassumptionsofutilitytheory,thedecision-maker’sutilityfunctionformoneyhasthepropertythatthedecision-makerisindifferentbetweentwoalternativecoursesofactionifthetwoalternativeshavethesameexpectedutility.
12.9-4 Thedecision-makerisofferedtwohypotheticalalternativesandaskedtoidentifythepointofindifferencebetweenthetwo.
12.9-5 Thepointofindifferenceisthevalueofpwherethedecision-makerisindifferentbetweenthetwohypotheticalalternatives.
12.9-6 Thevalueobtainedtoevaluateeachnodeofthetreeistheexpectedutility.
12.9-7 Maxdecidedtodotheseismicsurveyandtoselliftheresultisunfavorableordrilliftheresultisfavorable.
12.10-1 TheGoferbrokeproblemcontainedthesameelementsastypicalapplicationsofdecisionanalysisbutisoversimplified.
12.10-2 Aninfluencediagramcomplementsthedecisiontreeforrepresentingandanalyzingdecisionanalysisproblems.
12.10-3 Typicalparticipantsincludemanagement,ananalyst,andagroupfacilitator.
12.10-4 Amanagercangotoamanagementconsultingfirmthatspecializesindecisionanalysis.
12.10-5 Decisionanalysisiswidelyusedaroundtheworld.
Problems
12.1 a) Max(A1)=6,Max(A2)=4,Max(A3)=8.Maximax=8withalternativeA3.
b) Min(A1)=2,Min(A2)=3,Min(A3)=1.Maximin=3withalternativeA2.
12.2 a) Max(A1)=30,Max(A2)=31,Max(A3)=22,Max(A4)=29.Maximax=31withA2.
b) Min(A1)=20,Min(A2)=14,Min(A3)=22,Min(A4)=21.Maximin=22withA3.
12.3 a)
StateofNature
Alternative
Sell10cases
Sell11cases
Sell12cases
Sell13cases
Buy10cases
$50
$50
$50
$50
Buy11cases
$47
$55
$55
$55
Buy12cases
$44
$52
$60
$60
Buy13cases
$41
$49
$57
$65
PriorProbability
b) Max(Buy10)=$50,Max(Buy11)=$55,Max(Buy12)=$60,Max(Buy13)=$65.
Maximax=$65withbuying13cases.
c) Min(Buy10)=$50,Min(Buy11)=$47,Min(Buy12)=$44,Min(Buy13)=$41.
Maximin=$50withbuying10cases.
d) Themostlikelystateofnatureistosell11cases.Underthisstate,sheshouldbuy11caseswithapayoffof$55.
e)
Jeanshouldbuy12cases.Themaximumexpectedpayoffis$53.60.
f)
Jeanshouldpurchase12cases.Themaximumexpectedpayoffis$55.20.
Jeanshouldpurchase12cases.Themaximumexpectedpayoffis$54.40.
Jeanshouldpurchase11cases.Themaximumexpectedpayoffis$53.40.
12.4 a) Max(Conservative)=$30million
Max(Speculative)=$40million
Max(Countercyclical)=$15million
Maximax=$40millionwiththespeculativeinvestment
b) Min(Conservative)=–$10million
Min(Speculative)=–$30million
Min(Countercyclical)=–$10million
Maximin=–$10millionwitheithertheconservativeofcountercyclicalinvestment.
c) Thestableeconomyisthemostlikelystateofnature.
Thespeculativeinvestmenthasthemaximumpayoffforthisstate($10million).
d) Thecountercyclicalinvestmenthasthemaximumexpectedpayoffof$5million.
12.5 a) Thecountercyclicalinvestmenthasthemaximumexpectedpayoffof$8million.
b) Thespeculativeinvestmenthasthemaximumexpectedpayoffof$5million.
c&d)
e)
f) Parta)Partb)
g)
h)
Counter-cyclicalandconservativecrossatapproximatelyp=0.62.
Conservativeandspeculativecrossatapproximatelyp=0.68.
i) Letp=priorprobabilityofstableeconomy
Fortheconservativeoption:
EP =(0.1)(30)+p(5)+(1–0.1–p)(–10)
=3+5p–9+10p
=15p–6
Forthespeculativeoption:
EP =(0.1)(40)+p(10)+(1–0.1–p)(–30)
=4+10p–27+30p
=40p–23
Forthecounter-cyclicaloption:
EP =(0.1)(–10)+p(0)+(1–0.1–p)(15)
=–1+0+13.5–15p
=–15p+12.5
Counter-cyclicalandconservativecrosswhen
–15p+12.5=15p–6or30p=18.5orp=0.617
Conservativeandspeculativecrosswhen
15p–6=40p–23or25p=17orp=0.68
Theyshouldchoosethecounter-cyclicaloptionwhenp<0.617,theconservativeoptionwhen0.617≤p<0.68,andthespeculativeoptionwhenp≥0.68.
12.6 a) Max(A1)=80,Max(A2)=50,Max(A3)=60.
Maximax=$80thousandwhenchoosingalternativeA1.
b) Min(A1)=25,Min(A2)=30,Min(A3)=40.
Maximin=$40thousandwhenchoosingalternativeA3.
c) S2isthemostlikelyoutcome.Forthisstate,themaximumpayoffof$50thousandoccurswithalternativeA2.
d) AlternativeA3hasthehighestexpectedpayoffof$48thousand.
e)
f) WhenthepriorprobabilityofS1is0.2,alternativeA2shouldbechosen,withanexpectedpayoffof$46thousand.
WhenthepriorprobabilityofS1is0.6,alternativeA1shouldbechosen,withanexpectedpayoffof$58thousand.
g)
12.7 a) Max(A1)=$220thousand,Max(A2)=$200thousand.
Maximax=$220thousandwhenchoosingalternativeA1.
b) Min(A1)=$110thousand,Min(A2)=$150thousand.
Maximin=$150thousandwhenchoosingalternativeA2.
c) S1isthemostlikelyoutcome.Forthisstate,themaximumpayoffof$220thousandoccurswithalternativeA1.
d) AlternativeA1hasthehighestexpectedpayoffof$194thousand.
e&f)
g)
Letp=priorprobabilityofS1.
ForA1:
EP =p(220)+(1–0.1–p)(170)+(0.1)(110)
=220p+153–170p+11
=50p+164
ForA2:
EP =p(200)+(1–0.1–p)(180)+(0.1)(150)
=200p+162–180p+15 =20p+177
A1andA2crosswhen50p+164=20p+177or30p=13orp=0.433.
TheyshouldchooseA2whenp≤0.433,A1whenp>0.433.
h)
Letp=priorprobabilityofS1.
ForA1:
EP =p(220)+(0.3)(170)+(1–0.3–p)(110)
=220p+51+77–110p
=110p+128
ForA2:
EP =p(200)+(0.3)(180)+(1–0.3–p)(150)
=200p+54+105–150p
=50p+159
A1andA2crosswhen110p+128=50p+159or60p=31orp=0.517.
TheyshouldchooseA2whenp≤0.517,A1whenp>0.517.
i)
Letp=priorprobabilityofS2.
ForA1:
EP =(0.6)(220)+p(170)+(1–0.6–p)(110)
=132+170p+44–110p
=60p+176
ForA2:
EP =(0.6)(200)+p(180)+(1–0.6–p)(150)
=120+180p+60–150p
=30p+180
A1andA2crosswhen60p+176=30p+180or30p=4orp=0.133.
TheyshouldchooseA2whenp≤0.133,A1whenp>0.133.
j) AlternativeA1shouldbechosen.
12.8 a)
StateofNature(Weather)
Alternative
Dry
Moderate
Damp
Crop1
20
35
40
Crop2
30
45
Crop3
30
25
25
Crop4
20
20
20
PriorProbability
b)
c) Crop1hasthehighestexpectedpayoffof$31,500.
d) Whenthepriorprobabilityofmoderateweatheris0.2,Crop2hasthehighestexpectedpayoffof$35,250.
Whenthepriorprobabilityofmoderateweatheris0.3,Crop2hasthehighestexpectedpayoffof$33,750.
Whenthepriorprobabilityofmoderateweatheris0.4,Crop2hasthehighestexpectedpayoffof$32,250.
Whenthepriorprobabilityofmoderateweatheris0.6,Crop1hasthehighestexpectedpayoffof$31,000.
12.9 Whenx=50,alternativeA3hasthehighestexpectedpayoffof$5,600.
Whenx=75,alternativeA1hasthehighestexpectedpayoffof$7,400.
BarbaraMillershouldpayamaximumof$1,800toincreasexto75.
12.10 a) AlternativeA2hasthehighestexpectedpayoffof$1,000.
b) Withperfectinformation,chooseA1forwhenthestateisS1,A2whenthestateisS2,andA3whenthestateisS3.
EP(withperfectinformation)=(0.2)(4)+(0.5)(2)+(0.3)(1)=$2,100
EVPI=EP(withperfectinformation)–EP(withoutmoreinformation)
=$2,100–$1,000=$1,100.
c)
EVPI=EP(withperfectinformation)–EP(withoutmoreinformation)
=$2,100–$1,000=$1,100.
d) Sincetheinformationwillcost$1,000andthevalueisnomorethan$1,100,itmightbeworthwhiletospendthemoney.
12.11 a) AlternativeA1hasthehighestexpectedpayoffof$35.
b) Withperfectinformation,chooseA1forwhenthestateisS1,A1whenthestateisS2,andA2whenthestateisS3.
EP(withperfectinformation)=(0.5)($50)+(0.3)($100)+(0.2)(–$10)=$53
EVPI=EP(withperfectinformation)–EP(withoutmoreinformation)
=$53–$35=$18
c)
EVPI=EP(withperfectinformation)–EP(withoutmoreinformation)
=$53–$35=$18
d) Betsyshouldconsiderspendingupto$18toobtainmoreinformation.
12.12 a) AlternativeA3hasthehighestexpectedpayoffof$35,000.
b) IfS1occursforcertainthenchoosealternativeA3(payoffis$10,000).
IfS1doesnotoccurforcertainthenthechanceofS2occurringis3/8andthechanceofS3occurringis5/8.SochooseA1(expectedpayoffis$66,250).
A1: (3/8)(10)+(5/8)(100)=66.25
A2: (3/8)(20)+(5/8)(50)=38.75
A3: (3/8)(10)+(5/8)(60)=41.25
EP(withinformation)=(0.2)(10)+(0.8)(66.25)=55
EVI=EP(withinformation)–EP(withoutmoreinformation)
=55–35=$20,000
Themaximumamountyoushouldpayfortheinformationis$20,000.
ThedecisionwiththisinformationwouldbetochooseA3ifS1willoccur.OtherwisechooseA1.Theexpectedpayoffis$55,000(excludingthepaymentforinformation).
c) IfS2occursforcertainthenchoosealternativeA2(payoffis$20,000).
IfS2doesnotoccurforcertainthenthechanceofS1occurringis2/7andthechanceofS3occurringis5/7.SochooseA3(expectedpayoffis$45,714).
A1: (2/7)(–100)+(5/7)(100)=42.857
A2: (2/7)(–10)+(5/7)(50)=32.857
A3: (2/7)(10)+(5/7)(60)=45.714
EP(withinformation)=(0.3)(20)+(0.7)(42.857)=38
EVI=EP(withinformation)–EP(withoutmoreinformation)
=38–35=$3,000
Themaximumamountyoushouldpayfortheinformationis$3,000.
ThedecisionwiththisinformationwouldbetochooseA2ifS2willoccur.OtherwisechooseA3.Theexpectedpayoffis$38,000(excludingthepaymentforinformation).
d) IfS3occursforcertainthenchoosealternativeA1(payoffis$100,000).
IfS3doesnotoccurforcertainthenthechanceofS1occurringis2/5andthechanceofS2occurringis3/5.SochooseA3(expectedpayoffis$10,000).
A1: (2/5)(–100)+(3/5)(10)=–34
A2: (2/5)(–10)+(3/5)(20)=8
A3: (2/5)(10)+(3/5)(10)=10
EP(withinformation)=(0.5)(100)+(0.5)(10)=55
EVI=EP(withinformation)–EP(withoutmoreinformation)
=55–35=$20,000
Themaximumamountyoushouldpayfortheinformationis$20,000.
ThedecisionwiththisinformationwouldbetochooseA1ifS3willoccur.OtherwisechooseA3.Theexpectedpayoffis$55,000(excludingthepaymentforinformation).
e) Withperfectinformation,chooseA3forwhenthestateisS1,A2whenthestateisS2,andA1whenthestateisS3.
EP(withperfectinformation)=(0.2)(10)+(0.3)(20)+(0.5)(100)=$58,000
EVPI=EP(withperfectinformation)–EP(withoutmoreinformation)
=58–35=$23,000
Amaximumof$23,000shouldbepaidfortheinformation.Withperfectinformation,chooseA3forwhenthestateisS1,A2whenthestateisS2,andA1whenthestateisS3.Theresultingexpectedpayoffis$58,000.
f) Themaximumamountyoushouldeverpayfortestingis$23,000.
12.13 a)
b)
c&d) Theoptimalpolicyistodoaseismicsurveyandsellifitisunfavorableordrillifitisfavorable.
12.14 a)
b)
c)
12.15 a)
StateofNature
Alternative
PoorRisk
AverageRisk
GoodRisk
ExtendCredit
-$15,000
$10,000
$20,000
Don’tExtendCredit
$0
$0
$0
PriorProbabilities
b) Extendingcreditmaximizestheexpectedpayoff($8,000).
c) Withperfectinformation,youwouldextendcreditiftheircreditrecordisaverageorgood,anddon’textendcreditiftheircreditrecordispoor.
EP(withperfectinformation)=(0.2)(0)+(0.5)(10)+(0.3)(20)=$11,000
EVPI=EP(withperfectinformation)–EP(withoutmoreinformation)
=$11,000–$8,000=$3,000.
Thisindicatesthatthecredit-ratingorganizationshouldnotbeused.
d) PF=PoorFinding AF=AverageFinding GF=GoodFinding
PS=PoorState AS=AverageState GS=GoodState
e)
f&g) Vincentshouldnotgetthecreditratingandsimplyextendcredit.
12.16 a) AlternativeA1maximizestheexpectedpayoff($100).
b)
EVPI=EP(withperfectinfo)–EP(withoutmoreinfo)=$220–$100=$120
Thisindicatesthatitmightbeworthwhiletodotheresearch.
c) P(stateandfinding)=P(state)P(finding|state)
i) P(PredictS1andActualS1)=(0.4)(0.6)=0.24
ii) P(PredictS1andActualS2)=(0.4)(0.4)=0.16
iii) P(PredictS2andActualS1)=(0.6)(0.2)=0.12
iv) P(PredictS2andActualS2
d) P(PredictS1)=0.24+0.12=0.36
P(PredictS2
e) P(state|finding)=P(stateandfinding)/P(finding)
P(ActualS1|PredictS1)=0.24/0.36=0.667
P(ActualS1|PredictS2)=0.16/0.64=0.250
P(ActualS2|PredictS1)=0.12/0.36=0.333
P(ActualS2|PredictS2
f)
g) IfS1ispredicted,thenchoosingalternativeA1maximizestheexpectedpayoff($233.33).
h) IfS2ispredicted,thenchoosingalternativeA2maximizestheexpectedpayoff($75).
i) Expectedpayoffgivenresearchis(0.36)($233.33)+(0.64)($75)–$100=$32.
j) TheoptimalpolicyistodonoresearchandsimplychooseA1.
k)
12.17 athroughd)
e)
12.18 a)
StateofNature
Alternative
Successful
Unsuccessful
Developnewproduct
$1,500,000
–$1,800,000
Don’tdevelopnewproduct
0
0
PriorProbabilities
b) Choosingtodeveloptheproductmaximizestheexpectedpayoff($400,000).
c) Withperfectinformation,Telemoreshoulddeveloptheproductifitwouldbesuccessful,anddon’tifitwillbeunsuccessful.
EP(perfectinformation)=(0.667)(1.5)+(0.333)(0)=$1million.
EVPI=EP(withperfectinformation)–EP(withoutmoreinformation)
=$1,000,000–$400,000=$600,000.
Thisindicatesthatconsiderationshouldbegiventoconductingthemarketsurvey.
d)
e) Theyshouldconductthesurvey,anddeveloptheproductifthesurveypredictstheproductwillbesuccessful.Theexpectedpayoffis$520,000.
f)
12.19 a)
StateofNature
Alternative
Screen
–$1,500
–$1,500
Don’tscreen
–$750
–$3,750
PriorProbabilities
b) Choosingnottoscreenmaximizestheexpectedpayoff.Theexpectedcostis$1,350.
c) Withperfectinformation,theywouldscreenifp=0.25,anddon’tscreenifp=0.05.
EP(withperfectinformation)=(0.8)(–$750)+(0.2)(–$1,500)=–$900
EVPI=EP(withperfectinformation)–EP(withoutmoreinformation)
=(–$900)–(–$1,350)=$450.
Thisindicatesthatconsiderationshouldbegiventoinspectingthesingleitem.
d)
e) Theoptimalpolicyisnottopre-screenorscreen.
12.20 a)
StateofNature
Alternative
Sell10,000
Sell100,000
BuildComputers
$0
$54million
SellRights
$15million
$15million
b)
c) Theyshouldbuildcomputers,withanexpectedpayoffof$27million.
d)
e)
f) Letp=priorprobabilityofselling10,000.
ForBuild:
EP =p(0)+(1–p)(54)
=–54p+54
ForSell:
EP =p(15)+(1–p)(15)
=15
BuildandSellcrosswhen–54p+54=15or54p=39orp=0.722
Theyshouldbuildwhenp≤0.722,andsellwhenp>0.722.
12.21 a) Withperfectinformation,theyshouldbuildcomputersiftheywillsell100,000ofthem,andselltherightsiftheycouldonlysell10,000computers.
EP(withperfectinformation)=(0.5)(54)+(0.5)(15)=$34.5million
EVPI=EP(withperfectinformation)–EPwithoutmoreinformation)
=34.5–27=$7.5million.
b)Sincethemarketresearchwillcost$1millionitmightbeworthwhiletoperformit.
c)
d)
12.22 a) Theoptimalpolicyistodonomarketresearchandbuildthecomputers.Theexpectedpayoffis$27million.
b) Iftherightscanbesoldfor$16.5or$13.5million,theoptimalpolicyisstilltobuildthecomputerswithanexpectedpayoffof$27million.
Ifthecostofsettinguptheassemblylineis$5.4millionor$6.6million,theoptimalpolicyisstilltobuildthecomputerswithanexpectedpayoffof$27.6or$26.4million,respectively.
Ifthedifferencebetweenthesellingpriceandvariablecostofeachcomputeris$540or$660,theoptimalpolicyisstilltobuildthecomputerswithanexpectedpayoffof$23.7or$33.3million,respectively.
Foreachcombinationoffinancialdata,theexpectedpayoffisasshownbelow.Inallcases,theoptimalpolicyistobuildthecomputers(withoutmarketresearch).
SellRights
Costof
AssemblyLine
SellingPrice–
VariableCost
Expected
Payoff
$13.5million
$5.4million
$540
$24.3million
$13.5million
$5.4million
$660
$30.9million
$13.5million
$6.6million
$540
$23.1million
$13.5million
$6.6million
$660
$29.7million
$16.5million
$5.4million
$540
$24.3million
$16.5million
$5.4million
$660
$30.9million
$16.5million
$6.6million
$540
$23.1million
$16.5million
$6.6million
$660
$29.7million
c)
d)
12.23 aandb)
12.24
12.25 a)
StateofNature
Alternative
WinningSeason
LosingSeason
Holdcampaign
$3million
–$2million
Don’tholdcampaign
0
0
PriorProbabilities
b) Choosingtoholdthecampaignmaximizestheexpectedpayoff($1million).
c) Withperfectinformation,LelandUniversityshouldholdthecampaigniftheywillhaveawinningseasonanddon’tholdthecampaigniftheywillhavealosingseason.
EP(withperfectinformation)=(0.6)(3)+(0.4)(0)=$1.8million
EVPI =EP(withperfectinfo)–EP(withoutmoreinfo)
=$1.8million–$1million=$800,000.
d)
e)
f&g) LelandUniversityshouldhireWilliam.Ifhepredictsawinningseasonthentheyshouldholdthecampaign,ifhepredictsalosingseasonthentheyshouldnotholdthecampaign.
12.26 a&c) (Note:thisdecisiontreecontinuesonthenextpage.)
b) Thecomptrollershouldinvestinstocksthefirstyear.Ifthereisgrowthduringthefirstyearthensheshouldinvestinstocksagainthesecondyear.Ifthereisarecessionduringthefirstyearthensheshouldinvestinbondsforthesecondyear.Theexpectedpayoffis$122.94million.
12.27 a&b) TheoptimalpolicyistowaituntilWednesdaytobuyifthepriceis$9onTuesday.Ifthepriceis$10or$11onTuesdaythenbuyonTuesday.
12.28 Theoptimalpolicyistosamplethefruitandbuyifitisexcellentandrejectifitisunsatisfactory.
12.29 a)
StateofNature
Alternative
Successful
Unsuccessful
Introducenewproduct
$40million
–$15million
Don’tintroducenewproduct
0
0
PriorProbabilities
Choosetointroducethenewproduct(expectedpayoffis$12.5million).
b) Withperfectinformation,MortonWardshouldintroducetheproductifitwillbesuccessful,anddon’tintroducetheproductifitwon’t.
EP(withperfectinformation)=(0.5)(40)+(0.5)(0)=$20million.
EVPI=EP(withperfectinfo)–EP(withoutmoreinfo)=20–12.5=$7.5million.
c) Theoptimalpolicyisnottotestbuttointroducethenewproduct.Theexpectedpayoffis$12.5million.
d) Ifthenetprofitifsuccessfulisonly$30million,thentheoptimalpolicyistoconductthetestmarketandonlyintroducetheproductifthetestmarketapproves.Theexpectedpayoffis$8.125million.
Ifthenetprofitifsuccessfulis$50million,thentheoptimalpolicyistoskipthetestmarketandintroducetheproduct,withanexpectedpayoffof$17.5million.
Ifthenetlossifunsuccessfulisonly$11.25million,thentheoptimalpolicyistoskipthetestmarketandintroducetheproduct,withanexpectedpayoffof$14.375million.
Ifthenetlossifunsuccessfulis$18.75million,thentheoptimalpolicyistoconductthetestmarketandonlyintroducetheproductifthetestmarketapproves.Theexpectedpayoffis$11.656million.
Foreachcombinationoffinancialdata,theexpectedpayoffisasshownbelow.Inallcases,theoptimalpolicyistobuildthecomputers(withoutmarketresearch).
NetProfitif
Successful
NetLossif
Unsuccessful
Optimal
Policy
Expected
Payoff
$30million
$11.25million
SkipTest,IntroduceProduct
$9.375million
$30million
$18.75million
Test,IntroduceifApprove
$7.656million
$50million
$11.25million
SkipTest,IntroduceProduct
$19.375million
$50million
$18.75million
Test,IntroduceifApprove
$15.656million
e)
f)
Bothchartsindicatethattheexpectedprofitissens
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 纸制蛋糕顶饰商业机会挖掘与战略布局策略研究报告
- 裘皮外套细分市场深度研究报告
- 河南省开封市金科新未来2024-2025学年高三上学期10月联考数学试题 含解析
- 人流控制栅栏出租行业营销策略方案
- 制罐头用非电压力锅产业链招商引资的调研报告
- 写字台产品供应链分析
- 美容乳液市场发展前景分析及供需格局研究预测报告
- 球棒市场发展前景分析及供需格局研究预测报告
- 电动碾磨机产品供应链分析
- 不间断电源产品供应链分析
- atl变频器说明书AE 2
- 小学美术人美五年级下册多彩的民族传统纹样敦煌藻井纹样教案
- 2023届衡南县“五科联考”数学试卷(含答案)
- 公司税务管理办法
- 竞赛培训专题6-整数的整除性
- 武术操《英雄少年》全套动作教学教案
- 2022年部编四年级语文上册专项选择正确读音
- 绿化养护重点难点分析及解决措施
- 2022中央机关遴选公务员笔试题
- 安全生产费用提取 和使用管理制度(3篇)
- 《眼科学基础》期末复习题库含答案
评论
0/150
提交评论