版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西柳州市柳南区、城中区2023-2024学年中考联考数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.如图,这是由5个大小相同的整体搭成的几何体,该几何体的左视图是()A. B. C. D.2.下列说法错误的是()A.必然事件的概率为1B.数据1、2、2、3的平均数是2C.数据5、2、﹣3、0的极差是8D.如果某种游戏活动的中奖率为40%,那么参加这种活动10次必有4次中奖3.我国“神七”在2008年9月26日顺利升空,宇航员在27日下午4点30分在距离地球表面423公里的太空中完成了太空行走,这是我国航天事业的又一历史性时刻.将423公里用科学记数法表示应为()米.A.42.3×104 B.4.23×102 C.4.23×105 D.4.23×1064.有三张正面分别标有数字-2,3,4的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后,从中任取一张(不放回),再从剩余的卡片中任取一张,则两次抽取的卡片上的数字之积为正偶数的概率是()A. B. C. D.5.如图,将周长为8的△ABC沿BC方向平移1个单位长度得到,则四边形的周长为()A.8 B.10 C.12 D.166.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为()A. B. C. D.7.某校八(2)班6名女同学的体重(单位:kg)分别为35,36,38,40,42,42,则这组数据的中位数是()A.38 B.39 C.40 D.428.一元二次方程x2-2x=0的解是()A.x1=0,x2=2 B.x1=1,x2=2 C.x1=0,x2=-2 D.x1=1,x2=-29.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=()A.110° B.120° C.125° D.135°10.估计的值在()A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间二、填空题(本大题共6个小题,每小题3分,共18分)11.已知点,在二次函数的图象上,若,则__________.(填“”“”“”)12.如图,在平面直角坐标系中,Rt△ABO的顶点O与原点重合,顶点B在x轴上,∠ABO=90°,OA与反比例函数y=的图象交于点D,且OD=2AD,过点D作x轴的垂线交x轴于点C.若S四边形ABCD=10,则k的值为.13.如图,是由一些大小相同的小正方体搭成的几何体分别从正面看和从上面看得到的平面图形,则搭成该几何体的小正方体最多是_______个.14.如图,AB是圆O的直径,AC是圆O的弦,AB=2,∠BAC=30°.在图中画出弦AD,使AD=1,则∠CAD的度数为_____°.15.如图,△ABC是直角三角形,∠C=90°,四边形ABDE是菱形且C、B、D共线,AD、BE交于点O,连接OC,若BC=3,AC=4,则tan∠OCB=_____16.计算:cos245°-tan30°sin60°=______.三、解答题(共8题,共72分)17.(8分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.18.(8分)元旦放假期间,小明和小华准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同.(1)求小明选择去白鹿原游玩的概率;(2)用树状图或列表的方法求小明和小华都选择去秦岭国家植物园游玩的概率.19.(8分)已知顶点为A的抛物线y=a(x-)2-2经过点B(-,2),点C(,2).(1)求抛物线的表达式;(2)如图1,直线AB与x轴相交于点M,与y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A-B-C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN′,若点N′落在x轴上,请直接写出Q点的坐标.20.(8分)(2017江苏省常州市)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“其他”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如下统计图:根据统计图所提供的信息,解答下列问题:(1)本次抽样调查中的样本容量是;(2)补全条形统计图;(3)该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数.21.(8分)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10000元,第三天收到捐款12100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?22.(10分)已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.求证:DE=OE;若CD∥AB,求证:BC是⊙O的切线;在(2)的条件下,求证:四边形ABCD是菱形.23.(12分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.求证:△AEC≌△BED;若∠1=40°,求∠BDE的度数.24.已知点E为正方形ABCD的边AD上一点,连接BE,过点C作CN⊥BE,垂足为M,交AB于点N.(1)求证:△ABE≌△BCN;(2)若N为AB的中点,求tan∠ABE.
参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】
观察所给的几何体,根据三视图的定义即可解答.【详解】左视图有2列,每列小正方形数目分别为2,1.故选A.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.2、D【解析】试题分析:A.概率值反映了事件发生的机会的大小,必然事件是一定发生的事件,所以概率为1,本项正确;B.数据1、2、2、3的平均数是1+2+2+34C.这些数据的极差为5﹣(﹣3)=8,故本项正确;D.某种游戏活动的中奖率为40%,属于不确定事件,可能中奖,也可能不中奖,故本说法错误,故选D.考点:1.概率的意义;2.算术平均数;3.极差;4.随机事件3、C【解析】423公里=423000米=4.23×105米.故选C.4、C【解析】画树状图得:
∵共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况,
∴两次抽取的卡片上的数字之积为正偶数的概率是:.故选C.【点睛】运用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.5、B【解析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.根据题意,将周长为8个单位的△ABC沿边BC向右平移1个单位得到△DEF,
∴AD=1,BF=BC+CF=BC+1,DF=AC;
又∵AB+BC+AC=8,
∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1.
故选C.“点睛”本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.6、A【解析】
让黄球的个数除以球的总个数即为所求的概率.【详解】解:因为一共10个球,其中3个黄球,所以从袋中任意摸出1个球是黄球的概率是.
故选:A.【点睛】本题考查概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.7、B【解析】
根据中位数的定义求解,把数据按大小排列,第3、4个数的平均数为中位数.【详解】解:由于共有6个数据,
所以中位数为第3、4个数的平均数,即中位数为=39,
故选:B.【点睛】本题主要考查了中位数.要明确定义:将一组数据从小到大(或从大到小)重新排列后,若这组数据的个数是奇数,则最中间的那个数叫做这组数据的中位数;若这组数据的个数是偶数,则最中间两个数的平均数是这组数据的中位数.8、A【解析】试题分析:原方程变形为:x(x-1)=0x1=0,x1=1.故选A.考点:解一元二次方程-因式分解法.9、D【解析】
如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=(∠ABE+∠CDE)=(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选D.【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.10、D【解析】
寻找小于26的最大平方数和大于26的最小平方数即可.【详解】解:小于26的最大平方数为25,大于26的最小平方数为36,故,即:,故选择D.【点睛】本题考查了二次根式的相关定义.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】抛物线的对称轴为:x=1,∴当x>1时,y随x的增大而增大.∴若x1>x2>1
时,y1>y2
.故答案为>12、﹣1【解析】
∵OD=2AD,∴,∵∠ABO=90°,DC⊥OB,∴AB∥DC,∴△DCO∽△ABO,∴,∴,∵S四边形ABCD=10,∴S△ODC=8,∴OC×CD=8,OC×CD=1,∴k=﹣1,故答案为﹣1.13、7【解析】
首先利用从上面看而得出的俯视图得出该几何体的第一层是由几个小正方体组成,然后进一步根据其从正面看得出的主视图得知其第二层最多可以放几个小正方体,然后进一步计算即可得出答案.【详解】根据俯视图可得出第一层由5个小正方体组成;再结合主视图,该正方体第二层最多可放2个小正方体,∴,∴最多是7个,故答案为:7.【点睛】本题主要考查了三视图的运用,熟练掌握三视图的特性是解题关键.14、30或1.【解析】
根据题意作图,由AB是圆O的直径,可得∠ADB=∠AD′B=1°,继而可求得∠DAB的度数,则可求得答案.【详解】解:如图,∵AB是圆O的直径,∴∠ADB=∠AD′B=1°,∵AD=AD′=1,AB=2,∴cos∠DAB=cosD′AB=,∴∠DAB=∠D′AB=60°,∵∠CAB=30°,∴∠CAD=30°,∠CAD′=1°.∴∠CAD的度数为:30°或1°.故答案为30或1.【点睛】本题考查圆周角定理;含30度角的直角三角形.15、【解析】
利用勾股定理求出AB,再证明OC=OA=OD,推出∠OCB=∠ODC,可得tan∠OCB=tan∠ODC=,由此即可解决问题.【详解】在Rt△ABC中,∵AC=4,BC=3,∠ACB=90°,∴AB==5,∵四边形ABDE是菱形,∴AB=BD=5,OA=OD,∴OC=OA=OD,∴∠OCB=∠ODC,∴tan∠OCB=tan∠ODC==,故答案为.【点睛】本题考查菱形的性质、勾股定理、直角三角形斜边中线的性质、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.16、0【解析】
直接利用特殊角的三角函数值代入进而得出答案.【详解】=.故答案为0.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.三、解答题(共8题,共72分)17、1【解析】
先提取公因式ab,再根据完全平方公式进行二次分解,然后代入数据进行计算即可得解.【详解】解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,将a+b=3,ab=2代入得,ab(a+b)2=2×32=1.故代数式a3b+2a2b2+ab3的值是1.18、(1);(2)【解析】
(1)利用概率公式直接计算即可;
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小华都选择去同一个地方游玩的情况,再利用概率公式即可求得答案.【详解】(1)∵小明准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,∴小明选择去白鹿原游玩的概率=;(2)画树状图分析如下:两人选择的方案共有16种等可能的结果,其中选择同种方案有1种,所以小明和小华都选择去秦岭国家植物园游玩的概率=.【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.19、(1)y=(x-)2-2;(2)△POE的面积为或;(3)点Q的坐标为(-,)或(-,2)或(,2).【解析】
(1)将点B坐标代入解析式求得a的值即可得;(2)由∠OPM=∠MAF知OP∥AF,据此证△OPE∽△FAE得===,即OP=FA,设点P(t,-2t-1),列出关于t的方程解之可得;(3)分点Q在AB上运动、点Q在BC上运动且Q在y轴左侧、点Q在BC上运动且点Q在y轴右侧这三种情况分类讨论即可得.【详解】解:(1)把点B(-,2)代入y=a(x-)2-2,解得a=1,∴抛物线的表达式为y=(x-)2-2,(2)由y=(x-)2-2知A(,-2),设直线AB表达式为y=kx+b,代入点A,B的坐标得,解得,∴直线AB的表达式为y=-2x-1,易求E(0,-1),F(0,-),M(-,0),若∠OPM=∠MAF,∴OP∥AF,∴△OPE∽△FAE,∴,∴OP=FA=,设点P(t,-2t-1),则,解得t1=-,t2=-,由对称性知,当t1=-时,也满足∠OPM=∠MAF,∴t1=-,t2=-都满足条件,∵△POE的面积=OE·|t|,∴△POE的面积为或;(3)如图,若点Q在AB上运动,过N′作直线RS∥y轴,交QR于点R,交NE的延长线于点S,设Q(a,-2a-1),则NE=-a,QN=-2a.由翻折知QN′=QN=-2a,N′E=NE=-a,由∠QN′E=∠N=90°易知△QRN′∽△N′SE,∴==,即===2,∴QR=2,ES=,由NE+ES=NS=QR可得-a+=2,解得a=-,∴Q(-,),如图,若点Q在BC上运动,且Q在y轴左侧,过N′作直线RS∥y轴,交BC于点R,交NE的延长线于点S.设NE=a,则N′E=a.易知RN′=2,SN′=1,QN′=QN=3,∴QR=,SE=-a.在Rt△SEN′中,(-a)2+12=a2,解得a=,∴Q(-,2),如图,若点Q在BC上运动,且点Q在y轴右侧,过N′作直线RS∥y轴,交BC于点R,交NE的延长线于点S.设NE=a,则N′E=a.易知RN′=2,SN′=1,QN′=QN=3,∴QR=,SE=-a.在Rt△SEN′中,(-a)2+12=a2,解得a=,∴Q(,2).综上,点Q的坐标为(-,)或(-,2)或(,2).【点睛】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、翻折变换的性质及勾股定理等知识点.20、(1)100;(2)作图见解析;(3)1.【解析】试题分析:(1)根据百分比=计算即可;(2)求出“打球”和“其他”的人数,画出条形图即可;(3)用样本估计总体的思想解决问题即可.试题解析:(1)本次抽样调查中的样本容量=30÷30%=100,故答案为100;(2)其他有100×10%=10人,打球有100﹣30﹣20﹣10=40人,条形图如图所示:(3)估计该校课余兴趣爱好为“打球”的学生人数为2000×40%=1人.21、(1)捐款增长率为10%.(2)第四天该单位能收到13310元捐款.【解析】
(1)根据“第一天收到捐款钱数×(1+每次降价的百分率)2=第三天收到捐款钱数”,设出未知数,列方程解答即可.(2)第三天收到捐款钱数×(1+每次降价的百分率)=第四天收到捐款钱数,依此列式子解答即可.【详解】(1)设捐款增长率为x,根据题意列方程得:,解得x1=0.1,x2=-1.9(不合题意,舍去).答:捐款增长率为10%.(2)12100×(1+10%)=13310元.答:第四天该单位能收到13310元捐款.22、(1)证明见解析;(2)证明见解析;(3)证明见解析.【解析】
(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;(2)根据等腰三角形的性质得到∠3=∠COD=∠DEO=60°,根据平行线的性质得到∠4=∠1,根据全等三角形的性质得到∠CBO=∠CDO=90°,于是得到结论;(3)先判断出△ABO≌△CDE得出AB=CD,即可判断出四边形ABCD是平行四边形,最后判断出CD=AD即可.【详解】(1)如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴∠BOC=∠DOC=60°,在△CDO与△CBO中,,∴△CDO≌△CBO(SAS),∴∠CBO=∠CDO=90°,∴OB⊥BC,∴BC是⊙O的切线;(3)∵OA=OB=OE,OE=DE=EC,∴OA=OB=DE=EC,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴△ABO≌△CDE(AAS),∴AB=CD,∴四边形A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO 9221:2024 EN Furniture - Childrens high chairs - Safety requirements and test methods
- 充电桩安装及安全使用协议范本
- 辽宁省沈阳市沈阳市郊联体2024-2025学年高二上学期11月期中生物试题 含解析
- 2024年度企业级区块链技术研发与许可合同3篇
- 2024年度学校食堂电梯安装与使用合同
- 二零二四年度国际海鲜产品买卖合同
- 担保公司2024年度服务合同担保
- 二零二四年度体育赛事组织承揽合同
- 二零二四年文化艺术活动组织策划合同
- 二零二四年度工厂企业水电供应合同
- 酒店业食品安全
- 2024版《安全生产法》考试题库附答案(共80题)
- 网络安全技术作业指导书
- 2024年信息网络工程分包劳务合同
- 网约车全国公共科目考试题库与答案(一)
- 煤矿灾害预防及事故应急管理
- 统编版 高中语文 必修上册 生命的诗意第三单元大单元教学
- 建筑施工安全生产治本攻坚三年行动工作计划
- 河道防汛应急预案(6篇)
- 2024年销售代理协议范本
- 电工登高作业安全操作规程
评论
0/150
提交评论