江苏省南通市海安市八校联考2025年初三下学期返校联考数学试题含解析_第1页
江苏省南通市海安市八校联考2025年初三下学期返校联考数学试题含解析_第2页
江苏省南通市海安市八校联考2025年初三下学期返校联考数学试题含解析_第3页
江苏省南通市海安市八校联考2025年初三下学期返校联考数学试题含解析_第4页
江苏省南通市海安市八校联考2025年初三下学期返校联考数学试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省南通市海安市八校联考2025年初三下学期返校联考数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分)1.若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A. B.1 C. D.2.如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径圆弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正确的是()A.①②③ B.①②④ C.①③④ D.②③④3.下面运算正确的是()A. B.(2a)2=2a2 C.x2+x2=x4 D.|a|=|﹣a|4.对于点A(x1,y1),B(x2,y2),定义一种运算:.例如,A(-5,4),B(2,﹣3),.若互不重合的四点C,D,E,F,满足,则C,D,E,F四点【】A.在同一条直线上B.在同一条抛物线上C.在同一反比例函数图象上D.是同一个正方形的四个顶点5.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是()A. B. C. D.6.将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为()A.y=(x+2)2﹣5B.y=(x+2)2+5C.y=(x﹣2)2﹣5D.y=(x﹣2)2+57.如图,在中,,,,点分别在上,于,则的面积为()A. B. C. D.8.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是(

)A.16cm B.18cm C.20cm D.21cm9.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x) B.16x=22(27﹣x) C.2×16x=22(27﹣x) D.2×22x=16(27﹣x)10.计算﹣2+3的结果是()A.1 B.﹣1 C.﹣5 D.﹣6二、填空题(本大题共6个小题,每小题3分,共18分)11.已知点A(2,4)与点B(b﹣1,2a)关于原点对称,则ab=_____.12.如图,Rt△ABC中,∠ACB=90°,∠A=15°,AB的垂直平分线与AC交于点D,与AB交于点E,连接BD.若AD=14,则BC的长为_____.13.如图,直线交于点,,与轴负半轴,轴正半轴分别交于点,,,的延长线相交于点,则的值是_________.14.某篮球架的侧面示意图如图所示,现测得如下数据:底部支架AB的长为1.74m,后拉杆AE的倾斜角∠EAB=53°,篮板MN到立柱BC的水平距离BH=1.74m,在篮板MN另一侧,与篮球架横伸臂DG等高度处安装篮筐,已知篮筐到地面的距离GH的标准高度为3.05m.则篮球架横伸臂DG的长约为_____m(结果保留一位小数,参考数据:sin53°≈,cos53°≈,tan53°≈).15.二次函数y=(x﹣2m)2+1,当m<x<m+1时,y随x的增大而减小,则m的取值范围是_____.16.某学校组织学生到首钢西十冬奥广场开展综合实践活动,数学小组的同学们在距奥组委办公楼(原首钢老厂区的筒仓)20m的点B处,用高为0.8m的测角仪测得筒仓顶点C的仰角为63°,则筒仓CD的高约为______m.(精确到0.1m,sin63°≈0.89,cos63°≈0.45,tan63°≈1.96)三、解答题(共8题,共72分)17.(8分)如图,△ABC是等腰直角三角形,且AC=BC,P是△ABC外接圆⊙O上的一动点(点P与点C位于直线AB的异侧)连接AP、BP,延长AP到D,使PD=PB,连接BD.(1)求证:PC∥BD;(2)若⊙O的半径为2,∠ABP=60°,求CP的长;(3)随着点P的运动,的值是否会发生变化,若变化,请说明理由;若不变,请给出证明.18.(8分)如图,已知点C是∠AOB的边OB上的一点,求作⊙P,使它经过O、C两点,且圆心在∠AOB的平分线上.19.(8分)某新建成学校举行美化绿化校园活动,九年级计划购买A,B两种花木共100棵绿化操场,其中A花木每棵50元,B花木每棵100元.(1)若购进A,B两种花木刚好用去8000元,则购买了A,B两种花木各多少棵?(2)如果购买B花木的数量不少于A花木的数量,请设计一种购买方案使所需总费用最低,并求出该购买方案所需总费用.20.(8分)先化简,再求值:,其中a满足a2+2a﹣1=1.21.(8分)如图,点A.F、C.D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)求证:四边形BCEF是平行四边形,(2)若∠ABC=90°,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形.22.(10分)甲班有45人,乙班有39人.现在需要从甲、乙班各抽调一些同学去参加歌咏比赛.如果从甲班抽调的人数比乙班多1人,那么甲班剩余人数恰好是乙班剩余人数的2倍.请问从甲、乙两班各抽调了多少参加歌咏比赛?23.(12分)如图1,在菱形ABCD中,AB=,tan∠ABC=2,点E从点D出发,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时间为t(秒),将线段CE绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CF.(1)求证:BE=DF;(2)当t=秒时,DF的长度有最小值,最小值等于;(3)如图2,连接BD、EF、BD交EC、EF于点P、Q,当t为何值时,△EPQ是直角三角形?24.如图,直线y=﹣x+3分别与x轴、y交于点B、C;抛物线y=x2+bx+c经过点B、C,与x轴的另一个交点为点A(点A在点B的左侧),对称轴为l1,顶点为D.(1)求抛物线y=x2+bx+c的解析式.(2)点M(1,m)为y轴上一动点,过点M作直线l2平行于x轴,与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3),且x2>x1>1.①结合函数的图象,求x3的取值范围;②若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,求m的值.

参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a的方程,解方程即可得.【详解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故选A.【点睛】本题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.2、B【解析】

解:根据作图过程,利用线段垂直平分线的性质对各选项进行判断:根据作图过程可知:PB=CP,∵D为BC的中点,∴PD垂直平分BC,∴①ED⊥BC正确.∵∠ABC=90°,∴PD∥AB.∴E为AC的中点,∴EC=EA,∵EB=EC.∴②∠A=∠EBA正确;③EB平分∠AED错误;④ED=AB正确.∴正确的有①②④.故选B.考点:线段垂直平分线的性质.3、D【解析】

分别利用整数指数幂的性质以及合并同类项以及积的乘方运算、绝对值的性质分别化简求出答案.【详解】解:A,,故此选项错误;B,,故此选项错误;C,,故此选项错误;D,,故此选项正确.所以D选项是正确的.灵活运用整数指数幂的性质以及合并同类项以及积的乘方运算、绝对值的性质可以求出答案.4、A。【解析】∵对于点A(x1,y1),B(x2,y2),,∴如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),那么,。又∵,∴。∴。令,则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线上,∴互不重合的四点C,D,E,F在同一条直线上。故选A。5、B【解析】【分析】根据小刚行驶的路程与时间的关系,确定出图象即可.【详解】小刚从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选B.【点睛】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键.6、A【解析】

直接根据“上加下减,左加右减”的原则进行解答即可.【详解】抛物线y=x2的顶点坐标为(0,0),先向左平移2个单位再向下平移1个单位后的抛物线的顶点坐标为(﹣2,﹣1),所以,平移后的抛物线的解析式为y=(x+2)2﹣1.故选:A.本题考查了二次函数的图象与几何变换,熟知函数图象平移的法则是解答本题的关键.7、C【解析】

先利用三角函数求出BE=4m,同(1)的方法判断出∠1=∠3,进而得出△ACQ∽△CEP,得出比例式求出PE,最后用面积的差即可得出结论;【详解】∵,

∴CQ=4m,BP=5m,

在Rt△ABC中,sinB=,tanB=,

如图2,过点P作PE⊥BC于E,

在Rt△BPE中,PE=BP•sinB=5m×=3m,tanB=,

∴,

∴BE=4m,CE=BC-BE=8-4m,

同(1)的方法得,∠1=∠3,

∵∠ACQ=∠CEP,

∴△ACQ∽△CEP,

∴,∴,

∴m=,

∴PE=3m=,

∴S△ACP=S△ACB-S△PCB=BC×AC-BC×PE=BC(AC-PE)=×8×(6-)=,故选C.本题是相似形综合题,主要考查了相似三角形的判定和性质,三角形的面积的计算方法,判断出△ACQ∽△CEP是解题的关键.8、C【解析】试题分析:已知,△ABE向右平移2cm得到△DCF,根据平移的性质得到EF=AD=2cm,AE=DF,又因△ABE的周长为16cm,所以AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm.故答案选C.考点:平移的性质.9、D【解析】设分配x名工人生产螺栓,则(27-x)人生产螺母,根据一个螺栓要配两个螺母可得方程2×22x=16(27-x),故选D.10、A【解析】

根据异号两数相加的法则进行计算即可.【详解】解:因为-2,3异号,且|-2|<|3|,所以-2+3=1.故选A.本题主要考查了异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.二、填空题(本大题共6个小题,每小题3分,共18分)11、1.【解析】由题意,得b−1=−1,1a=−4,解得b=−1,a=−1,∴ab=(−1)×(−1)=1,故答案为1.12、1【解析】解:∵DE是AB的垂直平分线,∴AD=BD=14,∴∠A=∠ABD=15°,∴∠BDC=∠A+∠ABD=15°+15°=30°.在Rt△BCD中,BC=BD=×14=1.故答案为1.点睛:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,30°角所对的直角边等于斜边的一半的性质,熟记性质是解答本题的关键.13、【解析】

连接,根据可得,并且根据圆的半径相等可得△OAD、△OBE都是等腰三角形,由三角形的内角和,可得∠C=45°,则有是等腰直角三角形,可得即可求求解.【详解】解:如图示,连接,∵,∴,∵,,∴,,∴,∴,∵是直径,∴,∴是等腰直角三角形,∴.本题考查圆的性质和直角三角形的性质,能够根据圆性质得出是等腰直角三角形是解题的关键.14、1.1.【解析】

过点D作DO⊥AH于点O,先证明△ABC∽△AOD得出=,再根据已知条件求出AO,则OH=AH-AO=DG.【详解】解:过点D作DO⊥AH于点O,如图:由题意得CB∥DO,∴△ABC∽△AOD,∴=,∵∠CAB=53°,tan53°=,∴tan∠CAB==,∵AB=1.74m,∴CB=1.31m,∵四边形DGHO为长方形,∴DO=GH=3.05m,OH=DG,∴=,则AO=1.1875m,∵BH=AB=1.75m,∴AH=3.5m,则OH=AH-AO≈1.1m,∴DG≈1.1m.故答案为1.1.本题考查了相似三角形的性质与应用,解题的关键是熟练的掌握相似三角形的性质与应用.15、m>1【解析】由条件可知二次函数对称轴为x=2m,且开口向上,由二次函数的性质可知在对称轴的左侧时y随x的增大而减小,可求得m+1<2m,即m>1.故答案为m>1.点睛:本题主要考查二次函数的性质,掌握当抛物线开口向下时,在对称轴右侧y随x的增大而减小是解题的关键.16、40.0【解析】

首先过点A作AE∥BD,交CD于点E,易证得四边形ABDE是矩形,即可得AE=BD=20m,DE=AB=0.8m,然后Rt△ACE中,由三角函数的定义,而求得CE的长,继而求得筒仓CD的高.【详解】过点A作AE∥BD,交CD于点E,∵AB⊥BD,CD⊥BD,∴∠BAE=∠ABD=∠BDE=90°,∴四边形ABDE是矩形,∴AE=BD=20m,DE=AB=0.8m,在Rt△ACE中,∠CAE=63°,∴CE=AE•tan63°=20×1.96≈39.2(m),∴CD=CE+DE=39.2+0.8=40.0(m).答:筒仓CD的高约40.0m,故答案为:40.0此题考查解直角三角形的应用−仰角的定义,注意能借助仰角构造直角三角形并解直角三角形是解此题的关键,注意数形结合思想的应用.三、解答题(共8题,共72分)17、(1)证明见解析;(2)+;(3)的值不变,.【解析】

(1)根据等腰三角形的性质得到∠ABC=45°,∠ACB=90°,根据圆周角定理得到∠APB=90°,得到∠APC=∠D,根据平行线的判定定理证明;(2)作BH⊥CP,根据正弦、余弦的定义分别求出CH、PH,计算即可;(3)证明△CBP∽△ABD,根据相似三角形的性质解答.【详解】(1)证明:∵△ABC是等腰直角三角形,且AC=BC,∴∠ABC=45°,∠ACB=90°,∴∠APC=∠ABC=45°,∴AB为⊙O的直径,∴∠APB=90°,∵PD=PB,∴∠PBD=∠D=45°,∴∠APC=∠D=45°,∴PC∥BD;(2)作BH⊥CP,垂足为H,∵⊙O的半径为2,∠ABP=60°,∴BC=2,∠BCP=∠BAP=30°,∠CPB=∠BAC=45°,在Rt△BCH中,CH=BC•cos∠BCH=,BH=BC•sin∠BCH=,在Rt△BHP中,PH=BH=,∴CP=CH+PH=+;(3)的值不变,∵∠BCP=∠BAP,∠CPB=∠D,∴△CBP∽△ABD,∴=,∴=,即=.本题考查的是圆周角定理、相似三角形的判定和性质以及锐角三角函数的概念,掌握圆周角定理、相似三角形的判定定理和性质定理是解题的关键.18、答案见解析【解析】

首先作出∠AOB的角平分线,再作出OC的垂直平分线,两线的交点就是圆心P,再以P为圆心,PC长为半径画圆即可.【详解】解:如图所示:.本题考查基本作图,掌握垂直平分线及角平分线的做法是本题的解题关键..19、(1)购买A种花木40棵,B种花木60棵;(2)当购买A种花木50棵、B种花木50棵时,所需总费用最低,最低费用为7500元.【解析】

(1)设购买A种花木x棵,B种花木y棵,根据“A,B两种花木共100棵、购进A,B两种花木刚好用去8000元”列方程组求解可得;(2)设购买A种花木a棵,则购买B种花木(100﹣a)棵,根据“B花木的数量不少于A花木的数量”求得a的范围,再设购买总费用为W,列出W关于a的解析式,利用一次函数的性质求解可得.【详解】解析:(1)设购买A种花木x棵,B种花木y棵,根据题意,得:,解得:,答:购买A种花木40棵,B种花木60棵;(2)设购买A种花木a棵,则购买B种花木(100﹣a)棵,根据题意,得:100﹣a≥a,解得:a≤50,设购买总费用为W,则W=50a+100(100﹣a)=﹣50a+10000,∵W随a的增大而减小,∴当a=50时,W取得最小值,最小值为7500元,答:当购买A种花木50棵、B种花木50棵时,所需总费用最低,最低费用为7500元.考点:一元一次不等式的应用;二元一次方程组的应用.20、a2+2a,2【解析】

根据分式的减法和除法可以化简题目中的式子,然后根据a2+2a−2=2,即可解答本题.【详解】解:===a(a+2)=a2+2a,∵a2+2a﹣2=2,∴a2+2a=2,∴原式=2.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21、(1)见解析(2)当AF=时,四边形BCEF是菱形.【解析】

(1)由AB=DE,∠A=∠D,AF=DC,根据SAS得△ABC≌DEF,即可得BC=EF,且BC∥EF,即可判定四边形BCEF是平行四边形.(2)由四边形BCEF是平行四边形,可得当BE⊥CF时,四边形BCEF是菱形,所以连接BE,交CF与点G,证得△ABC∽△BGC,由相似三角形的对应边成比例,即可求得AF的值.【详解】(1)证明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF.∵在△ABC和△DEF中,AC=DF,∠A=∠D,AB=DE,∴△ABC≌DEF(SAS).∴BC=EF,∠ACB=∠DFE,∴BC∥EF.∴四边形BCEF是平行四边形.(2)解:连接BE,交CF与点G,∵四边形BCEF是平行四边形,∴当BE⊥CF时,四边形BCEF是菱形.∵∠ABC=90°,AB=4,BC=3,∴AC=.∵∠BGC=∠ABC=90°,∠ACB=∠BCG,∴△ABC∽△BGC.∴,即.∴.∵FG=CG,∴FC=2CG=,∴AF=AC﹣FC=5﹣.∴当AF=时,四边形BCEF是菱形.22、从甲班抽调了35人,从乙班抽调了1人【解析】分析:首先设从甲班抽调了x人,那么从乙班抽调了(x﹣1)人,根据题意列出一元一次方程,从而得出答案.详解:设从甲班抽调了x人,那么从乙班抽调了(x﹣1)人,由题意得,45﹣x=2[39﹣(x﹣1)],解得:x=35,则x﹣1=35﹣1=1.答:从甲班抽调了35人,从乙班抽调了1人.点睛:本题主要考查的是一元一次方程的应用,属于基础题型.理解题目的含义,找出等量关系是解题的关键.23、(1)见解析;(2)t=(6+6),最小值等于12;(3)t=6秒或6秒时,△EPQ是直角三角形【解析】

(1)由∠ECF=∠BCD得∠DCF=∠BCE,结合DC=BC、CE=CF证△DCF≌△BCE即可得;(2)作BE′⊥DA交DA的延长线于E′.当点E运动至点E′时,由DF=BE′知此时DF最小,求得BE′、AE′即可得答案;(3)①∠EQP=90°时,由∠ECF=∠BCD、BC=DC、EC=FC得∠BCP=∠EQP=90°,根据AB=CD=6,tan∠ABC=tan∠ADC=2即可求得DE;②∠EPQ=90°时,由菱形ABCD的对角线AC⊥BD知EC与AC重合,可得DE=6.【详解】(1)∵∠ECF=∠BCD,即∠BCE+∠DCE=∠DCF+∠DCE,∴∠DCF=∠BCE,∵四边形ABCD是菱形,∴DC=BC,在△DCF和△BCE中,,∴△DCF≌△BCE(SAS),∴DF=BE;(2)如图1,作BE′⊥DA交DA的延长线于E′.当点E运动至点E′时,DF=BE′,此时DF最小,在Rt△ABE′中,AB=6,tan∠ABC=tan∠BAE′=2,∴设AE′=x,则BE′=2x,∴AB=x=6,x=6,则AE′=6∴DE′=6+6,DF=BE′=12,时间t=6+6,故答案为:6+6,12;(3)∵CE=CF,∴∠CEQ<90°,①当∠EQP=90°时,如图2①,∵∠ECF=∠BCD,BC=DC,EC=FC,∴∠CBD=∠CEF,∵∠BPC=∠EPQ,∴∠BCP=∠EQP=90°,∵AB=CD=6,tan∠ABC=tan∠ADC=2,∴DE=6,∴t=6秒;②当∠EPQ=90°时,如图2②,∵菱形ABCD的对角线AC⊥BD,∴EC与AC重合,∴DE=6,∴t=6秒,综上所述,t=6秒或6秒时,△EPQ是直角三角形.此题是菱形与动点问题,考查菱形的性质,三角形全等的判定定理,等腰三角形的性质,最短路径问题,注意(3)中的直角没有明确时应分情况讨论解答.24、(2)y=x2﹣4x+3;(2)①2<x3<4,②m的值为或2.【解析】

(2)由直线y=﹣x+3分别与x轴、y交于

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论