版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高级中学名校试卷PAGEPAGE2浙江省绍兴市2022-2023学年高一下学期6月期末数学试题一、单项选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知复数在复平面内对应的点是,则()A. B. C. D.〖答案〗B〖解析〗复数在复平面内对应的点为,则,所以.故选:B.2.某组数据、、、、、、、、、的第百分位数为()A. B. C. D.〖答案〗C〖解析〗数据、、、、、、、、、共个数,因为,因此,该组数据的第百分位数为.故选:C.3.已知向量,,则()A. B. C. D.〖答案〗D〖解析〗向量,,对于A,,,A错误;对于B,,,B错误;对于C,由于,即与不共线,C错误;对于D,,因此,D正确.故选:D.4.已知m,n是两条直线,,是两个平面,下列命题正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则〖答案〗D〖解析〗对于A,由知,存在过的平面与平面相交,当为交线时,满足,而,A错误;对于B,当与相交时,令交线为,若,则满足,B错误;对于C,,在平面内存在直线垂直于,为此直线时,满足,而,C错误;对于D,因为,则存在过的平面与平面相交,令交线为,有,又,因此,而,所以,D正确.故选:D.5.抛掷三枚质地均匀的硬币,有如下随机事件:“正面向上的硬币数为i”,其中i=0,1,2,3,B=“恰有两枚硬币抛掷结果相同”,则下列说法正确的是()A.与B相互独立 B.与B对立C. D.〖答案〗D〖解析〗总的可能有:(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正反),(反,反,正),(反,反,反),故,,,,而,,故选项A错误;,故选项B错误;,故选项C错误;{(正,反,反),(反,正反),(反,反,正)},{(正,正,反),(正,反,正),(反,正,正)},{(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正反),(反,反,正)},所以,故选项D正确.故选:D.6.轴截面为等腰直角三角形的圆锥为直角圆锥,如图所示,在直角圆锥中,AB为底面圆的直径,C在底面圆周上且为弧的中点,则异面直线PB与AC所成角的大小为()A.30° B.45° C.60° D.90°〖答案〗C〖解析〗在直角圆锥中,AB为底面圆的直径,C在底面圆周上且为弧的中点,,则,过点作交底面圆于点,连接,如图,则是异面直线PB与AC所成角或其补角,显然,即是正三角形,所以,即异面直线PB与AC所成角的大小为.故选:C.7.已知函数的部分图象如图所示,,是的两个零点,若,则下列为定值的量是()A. B. C. D.〖答案〗A〖解析〗函数,的周期为,由图象可得,令,可得,,所以,即,又,所以,,,又,所以,所以.故选:A.8.在长方体中,底面ABCD是边长为4的正方形,P是棱上的一个动点,若,,则三棱锥外接球的表面积是()A.144π B.36π C.9π D.6π〖答案〗B〖解析〗令长方体的高为,,于是,解得,在中,,则外接圆半径,显然平面,因此三棱锥外接球的球心在线段的中垂面上,球心到平面的距离为,则球半径,所以三棱锥外接球的表面积.故选:B.二、多项选择题(本大题共4小题,每小题3分,共12分.在每小题给出的选项中,有多项符合题目要求.全部选对的得3分,部分选对的得1分,有选错的得0分.)9.下列等式成立的是()A. B.C. D.〖答案〗BCD〖解析〗对于A,,故A错误;对于B,,故B正确;对于C,,故C正确;对于D,,故D正确.故选:BCD.10.5月21日,2023世界珍珠发展论坛在浙江诸暨举办,大会见证了诸暨珍珠开拓创新、追求卓越的坚实步伐.据统计,今年以来,诸暨珍珠线上线下销售总额达250亿元,已超去年全年的60%,真正实现了“生于乡间小湖,远销五洲四海”.某珍珠商户销售A,B,C,D四款珍珠商品,今年第一季度比去年第一季度营收实现翻番,现统计这四款商品的营收占比,得到如下饼图.同比第一季度,下列说法正确的是()A.今年商品A的营收是去年的4倍B.今年商品B的营收是去年的2倍C.今年商品C的营收比去年减少D.今年商品B,D营收的总和与去年相比占总营收的比例不变〖答案〗ABD〖解析〗设去年第一季度营收为亿元,则今年第一季度营收为亿元,由扇形图可得款珍珠商品去年第一季度营收为亿元,则今年第一季度营收为亿元,A正确;款珍珠商品去年第一季度营收为亿元,则今年第一季度营收为亿元,B正确;款珍珠商品去年第一季度营收为亿元,则今年第一季度营收为亿元,C错误;因为商品B,D今年第一季度营收的总和占总营收的比例为,商品B,D去年第一季度营收的总和占总营收的比例为,所以今年商品B,D营收的总和与去年相比占总营收的比例不变,D正确.故选:ABD.11.如图,在边长为的正方形中,为的中点,将沿折起,使点到达点的位置,且二面角为.若、分别为、的中点,则()A. B.平面C.平面平面 D.点到平面的距离为〖答案〗ABD〖解析〗连接交于点,连接,取的中点,连接、,对于A选项,在正方形中,因为,,,所以,,则,所以,,则,即,翻折后,则有,,又因为,、平面,所以,平面,因为平面,所以,,A对;对于B选项,因为、分别为、的中点,所以,,因为平面,平面,所以,平面,因为,,则四边形为梯形,又因为、分别为、的中点,所以,,因为平面,平面,则平面,因为,、平面,则平面平面,因为平面,故平面,B对;对于C选项,因,且,,,所以,,所以,,则,在中,,所以,,因为平面平面,平面平面,,平面,所以,平面,因为平面,所以,,所以,,且,翻折前,,翻折后,,若平面平面,且平面平面,平面,所以,平面,因为平面,则,事实上,,,,则,即、不垂直,假设不成立,故平面与平面不垂直,C错;对于D选项,因为,且平面,所以,,在中,,,由余弦定理可得,所以,,所以,,设点到平面的距离为,由,即,所以,,D对.故选:ABD.12.在中,D为BC的中点,点E满足.若,则()A. B.C. D.〖答案〗ABD〖解析〗在中,D为BC的中点,,,如图,对于A,,有,A正确;对于B,,B正确;对于D,过作交的延长线于,由D为BC的中点,得是的中位线,则,于是,D正确;对于C,由选项D知,,假定,则,,,与矛盾,因此,C错误.故选:ABD.三、填空题(本大题共4小题,每小题3分,共12分.)13.函数的最小正周期是_____________.〖答案〗〖解析〗函数的最小正周期.故〖答案〗为:.14.某手机社交软件可以实时显示两人之间的直线距离.已知甲在某处静止不动,乙在点A时,显示与甲之间的距离为400米,之后乙沿直线从点A点走到点B,当乙在点B时,显示与甲之间的距离为600米,若A,B两点间的距离为500米,则乙从点A走到点B的过程中,甲、乙两人之间距离的最小值为_____________米.〖答案〗〖解析〗令甲的位置为点,如图,在中,,由余弦定理得,,过作于,所以所求距离的最小值为(米).故〖答案〗为:.15.已知一组样本数据,,,,的方差为5,且满足,则样本数据的方差为____________.〖答案〗9〖解析〗因为,所以数据,,,,的平均数为,方差,由已知,数据的平均数,方差.故〖答案〗为:.16.直三棱柱中,,,、分别为线段、的动点,则周长的最小值是____________.〖答案〗〖解析〗如下图所示:将面、面沿着延展为一个平面,将面、面沿着延展一个平面,连接,此时,线段的长即为周长的最小值,则,,由于,,,则,延展后,则四边形为矩形,因为,,则为等腰直角三角形,所以,,延展后,则,由余弦定理可得.故〖答案〗为:.四、解答题(本大题共6小题,共52分.解答应写出文字说明、证明过程或演算步骤.)17.记、、为平面单位向量,且.(1)求;(2)若,求.解:(1)由已知,且,所以,,则,所以,,因为,所以,.(2)由已知可得,且,所以,.18.在正方体中,棱长为3,是上底面的一个动点.(1)求三棱锥的体积;(2)当是上底面的中心时,求与平面ABCD所成角的余弦值.解:(1)如图所示,根据题意得:.(2)如图所示,过点做平面ABCD的垂线,垂足为G,易知G为AC中点,故为与平面ABCD所成线面角,又,所以与平面ABCD所成角的余弦值为:.19.为了推导两角和与差的三角函数公式,某同学设计了一种证明方法:在直角梯形ABCD中,,,点E为BC上一点,且,过点D作于点F,设,.(1)利用图中边长关系,证明:;(2)若,求.解:(1)在中,,,,则,在中,,,,则,在中,,,则,依题意,四边形是矩形,则,所以.(2)由及(1)知,,则,而为锐角,即有,,又是锐角,于是,所以.20.第19届亚运会将于2023年9月23日至10月8日在杭州举行,而亚运会志愿者的服务工作是举办一届成功的亚运会的重要保障.为配合亚运会志愿者选拔,某高校举行了志愿者选拔面试,面试成绩满分100分,现随机抽取了80名候选者的面试成绩,绘制成如下频率分布直方图.(1)求的值,并估计这80名候选者面试成绩平均值,众数,中位数;(同一组中的数据用该组区间的中点值作代表,中位数精确到0.1)(2)乒乓球项目场地志愿服务需要3名志愿者,有3名男生和2名女生通过该项志愿服务选拔,需要通过抽签的方式决定最终的人选,现将3张写有“中签”和2张写有“未中签”字样的字条随机分配给每一位候选人,求中签者中男生比女生多的概率.解:(1)由频率分布直方图可知,解得,,众数为70,因为前2组的频率和为,前3组的频率和为,所以中位数在第3组,设中位数为,则,解得,所以中位数为.(2)记3名男生分别为,记2名女生分别为,则所有抽签的情况有:未中签,中签;未中签,中签;未中签,中签;未中签,中签;未中签,中签;未中签,中签;未中签,中签;未中签,中签;未中签,中签;未中签,中签,共有10种情况,其中中签者中男生比女生多的有:未中签,中签;未中签,中签;未中签,中签;未中签,中签;未中签,中签;未中签,中签;未中签,中签,共7种,所以中签者中男生比女生多的概率为.21.如图,在平面四边形ABCD中,点B与点D分别在直线AC的两侧,.(1)已知,且(i)当时,求的面积;(ii)若,求.(2)已知,且,求AC的最大值.解:(1)(i)设,在中,由余弦定理得,解得,在中,,则底边上的高,所以的面积.(ii)设,依题意,,则,,即,而,所以.(2)连接,中,,,由余弦定理得,则,,设,在中,,于是,在中,,由余弦定理得:,则,当且仅当,即时取等号,所以当时,,所以AC的最大值是.22.如图,在正三棱台中,,D,E分别为,的中点.(1)证明:平面;(2)设P,Q分别为棱AB,BC上的点,且,D,P,Q均在平面上,若与的面积比为3:8,(i)证明:(ii)求与平面所成角的正弦值.解:(1)由棱台的性质知:延长交于点S,又,所以三棱锥为正四面体,为的中点,连接SE并延长,分别交BC,于点F、G,则F为中点,且为△的中线,所以G为等边的中心,连接AG,则平面SBC,又D为的中点,综上,,,且,,所以,即;,即,故,所以DE//AG,所以DE⊥平面SBC.(2)(i)延长交于点H,若均平面上,则共线,设,则,过A作AM//BC交PQ于点M,,则,设BQ=k,则,故且则,又所以,所以,即,所以,故Q为BC的中点,所以,即.(ii)由(i)知:即为面,连接,易知,且,由面,面,故面,综上,,连接交DP于点N,易知,且,所以,故,所以,又为与平面的交线,,面,设平面与平面所成角为,所以,故平面与平面所成角的正弦值为.浙江省绍兴市2022-2023学年高一下学期6月期末数学试题一、单项选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知复数在复平面内对应的点是,则()A. B. C. D.〖答案〗B〖解析〗复数在复平面内对应的点为,则,所以.故选:B.2.某组数据、、、、、、、、、的第百分位数为()A. B. C. D.〖答案〗C〖解析〗数据、、、、、、、、、共个数,因为,因此,该组数据的第百分位数为.故选:C.3.已知向量,,则()A. B. C. D.〖答案〗D〖解析〗向量,,对于A,,,A错误;对于B,,,B错误;对于C,由于,即与不共线,C错误;对于D,,因此,D正确.故选:D.4.已知m,n是两条直线,,是两个平面,下列命题正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则〖答案〗D〖解析〗对于A,由知,存在过的平面与平面相交,当为交线时,满足,而,A错误;对于B,当与相交时,令交线为,若,则满足,B错误;对于C,,在平面内存在直线垂直于,为此直线时,满足,而,C错误;对于D,因为,则存在过的平面与平面相交,令交线为,有,又,因此,而,所以,D正确.故选:D.5.抛掷三枚质地均匀的硬币,有如下随机事件:“正面向上的硬币数为i”,其中i=0,1,2,3,B=“恰有两枚硬币抛掷结果相同”,则下列说法正确的是()A.与B相互独立 B.与B对立C. D.〖答案〗D〖解析〗总的可能有:(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正反),(反,反,正),(反,反,反),故,,,,而,,故选项A错误;,故选项B错误;,故选项C错误;{(正,反,反),(反,正反),(反,反,正)},{(正,正,反),(正,反,正),(反,正,正)},{(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正反),(反,反,正)},所以,故选项D正确.故选:D.6.轴截面为等腰直角三角形的圆锥为直角圆锥,如图所示,在直角圆锥中,AB为底面圆的直径,C在底面圆周上且为弧的中点,则异面直线PB与AC所成角的大小为()A.30° B.45° C.60° D.90°〖答案〗C〖解析〗在直角圆锥中,AB为底面圆的直径,C在底面圆周上且为弧的中点,,则,过点作交底面圆于点,连接,如图,则是异面直线PB与AC所成角或其补角,显然,即是正三角形,所以,即异面直线PB与AC所成角的大小为.故选:C.7.已知函数的部分图象如图所示,,是的两个零点,若,则下列为定值的量是()A. B. C. D.〖答案〗A〖解析〗函数,的周期为,由图象可得,令,可得,,所以,即,又,所以,,,又,所以,所以.故选:A.8.在长方体中,底面ABCD是边长为4的正方形,P是棱上的一个动点,若,,则三棱锥外接球的表面积是()A.144π B.36π C.9π D.6π〖答案〗B〖解析〗令长方体的高为,,于是,解得,在中,,则外接圆半径,显然平面,因此三棱锥外接球的球心在线段的中垂面上,球心到平面的距离为,则球半径,所以三棱锥外接球的表面积.故选:B.二、多项选择题(本大题共4小题,每小题3分,共12分.在每小题给出的选项中,有多项符合题目要求.全部选对的得3分,部分选对的得1分,有选错的得0分.)9.下列等式成立的是()A. B.C. D.〖答案〗BCD〖解析〗对于A,,故A错误;对于B,,故B正确;对于C,,故C正确;对于D,,故D正确.故选:BCD.10.5月21日,2023世界珍珠发展论坛在浙江诸暨举办,大会见证了诸暨珍珠开拓创新、追求卓越的坚实步伐.据统计,今年以来,诸暨珍珠线上线下销售总额达250亿元,已超去年全年的60%,真正实现了“生于乡间小湖,远销五洲四海”.某珍珠商户销售A,B,C,D四款珍珠商品,今年第一季度比去年第一季度营收实现翻番,现统计这四款商品的营收占比,得到如下饼图.同比第一季度,下列说法正确的是()A.今年商品A的营收是去年的4倍B.今年商品B的营收是去年的2倍C.今年商品C的营收比去年减少D.今年商品B,D营收的总和与去年相比占总营收的比例不变〖答案〗ABD〖解析〗设去年第一季度营收为亿元,则今年第一季度营收为亿元,由扇形图可得款珍珠商品去年第一季度营收为亿元,则今年第一季度营收为亿元,A正确;款珍珠商品去年第一季度营收为亿元,则今年第一季度营收为亿元,B正确;款珍珠商品去年第一季度营收为亿元,则今年第一季度营收为亿元,C错误;因为商品B,D今年第一季度营收的总和占总营收的比例为,商品B,D去年第一季度营收的总和占总营收的比例为,所以今年商品B,D营收的总和与去年相比占总营收的比例不变,D正确.故选:ABD.11.如图,在边长为的正方形中,为的中点,将沿折起,使点到达点的位置,且二面角为.若、分别为、的中点,则()A. B.平面C.平面平面 D.点到平面的距离为〖答案〗ABD〖解析〗连接交于点,连接,取的中点,连接、,对于A选项,在正方形中,因为,,,所以,,则,所以,,则,即,翻折后,则有,,又因为,、平面,所以,平面,因为平面,所以,,A对;对于B选项,因为、分别为、的中点,所以,,因为平面,平面,所以,平面,因为,,则四边形为梯形,又因为、分别为、的中点,所以,,因为平面,平面,则平面,因为,、平面,则平面平面,因为平面,故平面,B对;对于C选项,因,且,,,所以,,所以,,则,在中,,所以,,因为平面平面,平面平面,,平面,所以,平面,因为平面,所以,,所以,,且,翻折前,,翻折后,,若平面平面,且平面平面,平面,所以,平面,因为平面,则,事实上,,,,则,即、不垂直,假设不成立,故平面与平面不垂直,C错;对于D选项,因为,且平面,所以,,在中,,,由余弦定理可得,所以,,所以,,设点到平面的距离为,由,即,所以,,D对.故选:ABD.12.在中,D为BC的中点,点E满足.若,则()A. B.C. D.〖答案〗ABD〖解析〗在中,D为BC的中点,,,如图,对于A,,有,A正确;对于B,,B正确;对于D,过作交的延长线于,由D为BC的中点,得是的中位线,则,于是,D正确;对于C,由选项D知,,假定,则,,,与矛盾,因此,C错误.故选:ABD.三、填空题(本大题共4小题,每小题3分,共12分.)13.函数的最小正周期是_____________.〖答案〗〖解析〗函数的最小正周期.故〖答案〗为:.14.某手机社交软件可以实时显示两人之间的直线距离.已知甲在某处静止不动,乙在点A时,显示与甲之间的距离为400米,之后乙沿直线从点A点走到点B,当乙在点B时,显示与甲之间的距离为600米,若A,B两点间的距离为500米,则乙从点A走到点B的过程中,甲、乙两人之间距离的最小值为_____________米.〖答案〗〖解析〗令甲的位置为点,如图,在中,,由余弦定理得,,过作于,所以所求距离的最小值为(米).故〖答案〗为:.15.已知一组样本数据,,,,的方差为5,且满足,则样本数据的方差为____________.〖答案〗9〖解析〗因为,所以数据,,,,的平均数为,方差,由已知,数据的平均数,方差.故〖答案〗为:.16.直三棱柱中,,,、分别为线段、的动点,则周长的最小值是____________.〖答案〗〖解析〗如下图所示:将面、面沿着延展为一个平面,将面、面沿着延展一个平面,连接,此时,线段的长即为周长的最小值,则,,由于,,,则,延展后,则四边形为矩形,因为,,则为等腰直角三角形,所以,,延展后,则,由余弦定理可得.故〖答案〗为:.四、解答题(本大题共6小题,共52分.解答应写出文字说明、证明过程或演算步骤.)17.记、、为平面单位向量,且.(1)求;(2)若,求.解:(1)由已知,且,所以,,则,所以,,因为,所以,.(2)由已知可得,且,所以,.18.在正方体中,棱长为3,是上底面的一个动点.(1)求三棱锥的体积;(2)当是上底面的中心时,求与平面ABCD所成角的余弦值.解:(1)如图所示,根据题意得:.(2)如图所示,过点做平面ABCD的垂线,垂足为G,易知G为AC中点,故为与平面ABCD所成线面角,又,所以与平面ABCD所成角的余弦值为:.19.为了推导两角和与差的三角函数公式,某同学设计了一种证明方法:在直角梯形ABCD中,,,点E为BC上一点,且,过点D作于点F,设,.(1)利用图中边长关系,证明:;(2)若,求.解:(1)在中,,,,则,在中,,,,则,在中,,,则,依题意,四边形是矩形,则,所以.(2)由及(1)知,,则,而为锐角,即有,,又是锐角,于是,所以.20.第19届亚运会将于2023年9月23日至10月8日在杭州举行,而亚运会志愿者的服务工作是举办一届成功的亚运会的重要保障.为配合亚运会志愿者选拔,某高校举行了志愿者选拔面试,面试成绩满分100分,现随机抽取了80名候选者的面试成绩,绘制成如下频率分布直方图.(1)求的值,并估计这80名候选者面试成绩平均值,众数,中位数;(同一组中的数据用该组区间的中点值作代表,中位数精确到0.1)(2)乒乓球项目场地志愿服务需要3名志愿者
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度租赁合同:某航空公司与机场关于飞机租赁的协议
- 2024年度销售代理合同代理范围与代理费用
- 2024年度重庆市南岸区电子元件生产厂房租赁合同
- 2024年度技术研发合同:新能源汽车技术研究
- 2024年度不锈钢水箱购销合同-学校直饮水项目
- 2024年度防火门窗安全评估与检测合同
- 2024年度医疗器械销售垫资合同
- 二零二四年度场地转租合同中的安全责任
- 2024年度学校绿化维护服务承包合同
- 2024年度设备维修合同的维修设备、维修范围及维修费用
- 小学音乐祖国祖国我们爱你课件ppt课件
- 防范恐怖袭击重点目标档案
- 郭维淮平乐正骨
- 江苏省普通高等学校学生军训军事技能训练和军事理论课教学工作考核评估方案
- 最新版个人征信报告模板-2020年-word版-可编辑-带水印7页
- 生物防火林带建设检查验收
- 蒂莉和高墙1PPT课件
- 我国电子商务中物流配送存在的问题(精)
- 天气学地面填图与识图
- 《全面质量管理》学习心得(一)
- 入行论(课堂PPT)
评论
0/150
提交评论