版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
惠州市实验中学2025年下学期高三数学试题高考适应性月考考试试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,,若,则()A.或 B.或 C.或 D.或2.在正项等比数列{an}中,a5-a1=15,a4-a2=6,则a3=()A.2 B.4 C. D.83.设是虚数单位,,,则()A. B. C.1 D.24.过双曲线的左焦点作直线交双曲线的两天渐近线于,两点,若为线段的中点,且(为坐标原点),则双曲线的离心率为()A. B. C. D.5.自2019年12月以来,在湖北省武汉市发现多起病毒性肺炎病例,研究表明,该新型冠状病毒具有很强的传染性各级政府反应迅速,采取了有效的防控阻击措施,把疫情控制在最低范围之内.某社区按上级要求做好在鄂返乡人员体格检查登记,有3个不同的住户属在鄂返乡住户,负责该小区体格检查的社区诊所共有4名医生,现要求这4名医生都要分配出去,且每个住户家里都要有医生去检查登记,则不同的分配方案共有()A.12种 B.24种 C.36种 D.72种6.2019年10月17日是我国第6个“扶贫日”,某医院开展扶贫日“送医下乡”医疗义诊活动,现有五名医生被分配到四所不同的乡镇医院中,医生甲被指定分配到医院,医生乙只能分配到医院或医院,医生丙不能分配到医生甲、乙所在的医院,其他两名医生分配到哪所医院都可以,若每所医院至少分配一名医生,则不同的分配方案共有()A.18种 B.20种 C.22种 D.24种7.对于定义在上的函数,若下列说法中有且仅有一个是错误的,则错误的一个是()A.在上是减函数 B.在上是增函数C.不是函数的最小值 D.对于,都有8.我国古代数学著作《九章算术》中有如下问题:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升(注:一斗为十升).问,米几何?”下图是解决该问题的程序框图,执行该程序框图,若输出的S=15(单位:升),则输入的k的值为() A.45 B.60 C.75 D.1009.已知直线:()与抛物线:交于(坐标原点),两点,直线:与抛物线交于,两点.若,则实数的值为()A. B. C. D.10.已知集合,则等于()A. B. C. D.11.已知,,且是的充分不必要条件,则的取值范围是()A. B. C. D.12.若集合,,则下列结论正确的是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设的内角的对边分别为,,.若,,,则_____________14.已知函数的最小值为2,则_________.15.设实数x,y满足,则点表示的区域面积为______.16.直线过圆的圆心,则的最小值是_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,平面分别是上的动点,且.(1)若平面与平面的交线为,求证:;(2)当平面平面时,求平面与平面所成的二面角的余弦值.18.(12分)已知椭圆()的离心率为,且经过点.(1)求椭圆的方程;(2)过点作直线与椭圆交于不同的两点,,试问在轴上是否存在定点使得直线与直线恰关于轴对称?若存在,求出点的坐标;若不存在,说明理由.19.(12分)在平面直角坐标系中,已知直线(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)设点的极坐标为,直线与曲线的交点为,求的值.20.(12分)已知点、分别在轴、轴上运动,,.(1)求点的轨迹的方程;(2)过点且斜率存在的直线与曲线交于、两点,,求的取值范围.21.(12分)如图,在四棱锥中,底面,,,,为的中点,是上的点.(1)若平面,证明:平面.(2)求二面角的余弦值.22.(10分)P是圆上的动点,P点在x轴上的射影是D,点M满足.(1)求动点M的轨迹C的方程,并说明轨迹是什么图形;(2)过点的直线l与动点M的轨迹C交于不同的两点A,B,求以OA,OB为邻边的平行四边形OAEB的顶点E的轨迹方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】
因为,所以,所以或.若,则,满足.若,解得或.若,则,满足.若,显然不成立,综上或,选B.2.B【解析】
根据题意得到,,解得答案.【详解】,,解得或(舍去).故.故选:.本题考查了等比数列的计算,意在考查学生的计算能力.3.C【解析】
由,可得,通过等号左右实部和虚部分别相等即可求出的值.【详解】解:,,解得:.故选:C.本题考查了复数的运算,考查了复数相等的涵义.对于复数的运算类问题,易错点是把当成进行运算.4.C【解析】由题意可得双曲线的渐近线的方程为.∵为线段的中点,∴,则为等腰三角形.∴由双曲线的的渐近线的性质可得∴∴,即.∴双曲线的离心率为故选C.点睛:本题考查了椭圆和双曲线的定义和性质,考查了离心率的求解,同时涉及到椭圆的定义和双曲线的定义及三角形的三边的关系应用,对于求解曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得(的取值范围).5.C【解析】
先将4名医生分成3组,其中1组有2人,共有种选法,然后将这3组医生分配到3个不同的住户中去,有种方法,由分步原理可知共有种.【详解】不同分配方法总数为种.故选:C此题考查的是排列组合知识,解此类题时一般先组合再排列,属于基础题.6.B【解析】
分两类:一类是医院A只分配1人,另一类是医院A分配2人,分别计算出两类的分配种数,再由加法原理即可得到答案.【详解】根据医院A的情况分两类:第一类:若医院A只分配1人,则乙必在医院B,当医院B只有1人,则共有种不同分配方案,当医院B有2人,则共有种不同分配方案,所以当医院A只分配1人时,共有种不同分配方案;第二类:若医院A分配2人,当乙在医院A时,共有种不同分配方案,当乙不在A医院,在B医院时,共有种不同分配方案,所以当医院A分配2人时,共有种不同分配方案;共有20种不同分配方案.故选:B本题考查排列与组合的综合应用,在做此类题时,要做到分类不重不漏,考查学生分类讨论的思想,是一道中档题.7.B【解析】
根据函数对称性和单调性的关系,进行判断即可.【详解】由得关于对称,若关于对称,则函数在上不可能是单调的,故错误的可能是或者是,若错误,则在,上是减函数,在在上是增函数,则为函数的最小值,与矛盾,此时也错误,不满足条件.故错误的是,故选:.本题主要考查函数性质的综合应用,结合对称性和单调性的关系是解决本题的关键.8.B【解析】
根据程序框图中程序的功能,可以列方程计算.【详解】由题意,.故选:B.本题考查程序框图,读懂程序的功能是解题关键.9.D【解析】
设,,联立直线与抛物线方程,消去、列出韦达定理,再由直线与抛物线的交点求出点坐标,最后根据,得到方程,即可求出参数的值;【详解】解:设,,由,得,∵,解得或,∴,.又由,得,∴或,∴,∵,∴,又∵,∴代入解得.故选:D本题考查直线与抛物线的综合应用,弦长公式的应用,属于中档题.10.C【解析】
先化简集合A,再与集合B求交集.【详解】因为,,所以.故选:C本题主要考查集合的基本运算以及分式不等式的解法,属于基础题.11.D【解析】
“是的充分不必要条件”等价于“是的充分不必要条件”,即中变量取值的集合是中变量取值集合的真子集.【详解】由题意知:可化简为,,所以中变量取值的集合是中变量取值集合的真子集,所以.利用原命题与其逆否命题的等价性,对是的充分不必要条件进行命题转换,使问题易于求解.12.D【解析】
由题意,分析即得解【详解】由题意,故,故选:D本题考查了元素和集合,集合和集合之间的关系,考查了学生概念理解,数学运算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.或【解析】试题分析:由,则可运用同角三角函数的平方关系:,已知两边及其对角,求角.用正弦定理;,则;可得.考点:运用正弦定理解三角形.(注意多解的情况判断)14.【解析】
首先利用绝对值的意义去掉绝对值符号,之后再结合后边的函数解析式,对照函数值等于2的时候对应的自变量的值,从而得到分段函数的分界点,从而得到相应的等量关系式,求得参数的值.【详解】根据题意可知,可以发现当或时是分界点,结合函数的解析式,可以判断0不可能,所以只能是是分界点,故,解得,故答案是.本题主要考查分段函数的性质,二次函数的性质,函数最值的求解等知识,意在考查学生的转化能力和计算求解能力.15.【解析】
先画出满足条件的平面区域,求出交点坐标,利用定积分即可求解.【详解】画出实数x,y满足表示的平面区域,如图(阴影部分):则阴影部分的面积,故答案为:本题考查了定积分求曲边梯形的面积,考查了微积分基本定理,属于基础题.16.【解析】
直线mx﹣ny﹣1=0(m>0,n>0)经过圆x2+y2﹣2x+2y﹣1=0的圆心(1,﹣1),可得m+n=1,再利用“乘1法”和基本不等式的性质即可得出.【详解】∵mx﹣ny﹣1=0(m>0,n>0)经过圆x2+y2﹣2x+2y﹣1=0的圆心(1,﹣1),∴m+n﹣1=0,即m+n=1.∴()(m+n)=22+2=4,当且仅当m=n时取等号.∴则的最小值是4.故答案为:4.本题考查了圆的标准方程、“乘1法”和基本不等式的性质,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)见解析;(2)【解析】
(1)首先由线面平行的判定定理可得平面,再由线面平行的性质定理即可得证;(2)以点为坐标原点,,所在的直线分别为轴,以过点且垂直于的直线为轴建立空间直角坐标系,利用空间向量法求出二面角的余弦值;【详解】解:(1)由,又平面,平面,所以平面.又平面,且平面平面,故.(2)因为平面,所以,又,所以平面,所以,又,所以.若平面平面,则平面,所以,由且,又,所以.以点为坐标原点,,所在的直线分别为轴,以过点且垂直于的直线为轴建立空间直角坐标系,则,,设则由,可得,,即,所以可得,所以,设平面的一个法向量为,则,,,取,得所以易知平面的法向量为,设平面与平面所成的二面角为,则,结合图形可知平面与平面所成的二面角的余弦值为.本题考查线面平行的判定定理及性质定理的应用,利用空间向量法求二面角,解题时要认真审题,注意空间思维能力的培养,属于中档题.18.(1)(2)见解析【解析】
(1)由题得a,b,c的方程组求解即可(2)直线与直线恰关于轴对称,等价于的斜率互为相反数,即,整理.设直线的方程为,与椭圆联立,将韦达定理代入整理即可.【详解】(1)由题意可得,,又,解得,.所以,椭圆的方程为(2)存在定点,满足直线与直线恰关于轴对称.设直线的方程为,与椭圆联立,整理得,.设,,定点.(依题意则由韦达定理可得,,.直线与直线恰关于轴对称,等价于的斜率互为相反数.所以,,即得.又,,所以,,整理得,.从而可得,,即,所以,当,即时,直线与直线恰关于轴对称成立.特别地,当直线为轴时,也符合题意.综上所述,存在轴上的定点,满足直线与直线恰关于轴对称.本题考查椭圆方程,直线与椭圆位置关系,熟记椭圆方程简单性质,熟练转化题目条件,准确计算是关键,是中档题.19.(1)(2)【解析】
(1)由公式可化极坐标方程为直角坐标方程;(2)把点极坐标化为直角坐标,直线的参数方程是过定点的标准形式,因此直接把参数方程代入曲线的方程,利用参数的几何意义求解.【详解】解:(1),则,∴,所以曲线的直角坐标方程为,即(2)点的直角坐标为,易知.设对应参数分别为将与联立得本题考查极坐标方程与直角坐标方程的互化,考查直线参数方程,解题时可利用利用参数方程的几何意义求直线上两点间距离问题.20.(1)(2)【解析】
(1)设坐标后根据向量的坐标运算即可得到轨迹方程.(2)联立直线和椭圆方程,用坐标表示出,得到,所以,代入韦达定理即可求解.【详解】(1)设,,则,设,由得.又由于,化简得的轨迹的方程为.(2)设直线的方程为,与的方程联立,消去得,,设,,则,,由已知,,则,故直线.,令,则,由于,,.所以,的取值范围为.此题考查轨迹问题,椭圆和直线相交,注意坐标表示向量进行转化的处理技巧,属于较难题目.21.(1)证明见解析(2)【解析】
(1)因为,利用线面平行的判定定理可证出平面,利用点线面的位置关系,得出和,由于底面,利用线面垂直的性质,得出,且,最后结合线面垂直的判定定理得出平面,即可证出平面.(2)由(1)可知,,两两垂直,建立空间直角坐标系,标出点坐标,运用空间向量坐标运算求出所需向量,分别求出平面和平面的法向量,最后利用空间二面角公式,即可求出的余弦值.【详解】(1)证明:因为,平面,平面,所以平面,因为平面,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 甲周疣的临床护理
- 产后风湿的健康宣教
- 缓慢型心律失常的护理
- 《设计你的人生》课件
- 《单片机原理及应用 》课件-第5章
- 嘴巴里长泡的临床护理
- 阔韧带妊娠的健康宣教
- 皮脂腺增生的临床护理
- JJF(陕) 116-2024 直流数字功率表校准规范
- 比较线段的长短课件西西模
- 2024年就业保障型定向委培合同3篇
- 2024预防流感课件完整版
- 2024沪粤版八年级上册物理期末复习全册知识点考点提纲
- 人教版2024-2025学年第一学期八年级物理期末综合复习练习卷(含答案)
- 残联内部审计计划方案
- 2024-2030年中国漫画行业发展趋势与投资战略研究研究报告
- 2024年大学生安全知识竞赛题库及答案(共190题)
- 科学认识天气智慧树知到期末考试答案2024年
- 2023-2024学年贵州省贵阳市八年级(上)期末数学试卷
- 数学新课标研究论文:小学数学“教学评一体化”的解读与探究
- 燃气红外线辐射采暖技术交底
评论
0/150
提交评论