版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
等比数列及其通项公式第1章数列湘教版
数学
选择性必修第一册课标要求1.理解等比数列的定义,并能运用通项公式解决相关问题;2.理解等比中项的概念;3.掌握等比数列的判定与证明方法.基础落实·必备知识一遍过重难探究·能力素养速提升学以致用·随堂检测促达标目录索引
基础落实·必备知识一遍过知识点1等比数列的概念一般地,如果一个数列从
起,每一项与它的前一项之比都等于
,那么这个数列称为等比数列,这个常数叫作等比数列的
,公比通常用字母
表示(q≠0).
顺序不能颠倒
名师点睛1.定义中的“从第2项起”是因为第1项没有前一项,也说明等比数列中至少有三项;2.“每一项与它的前一项之比都等于同一个常数”强调了比的顺序性以及所有比值均为同一常数;3.等比数列的公比可以是正数、负数,但不能是0.第2项
同一个常数
公比
q过关自诊1.判断正误.(正确的画√,错误的画×)(1)数列2,-2,2,-2,…是等比数列.(
)(2)若一个数列从第2项起每一项与前一项的比都为常数,则该数列为等比数列.(
)(3)存在既是等差数列又是等比数列的数列.(
)2.常数列一定是等比数列吗?√×√提示不一定,只有非零的常数列才是等比数列.知识点2等比数列的通项公式若等比数列{an}的首项为a1,公比为q,则数列的通项公式为
.
名师点睛1.通项公式an=a1qn-1中q的指数可以这样记:指数为等号前面的项an的项数n减去等号后面的项a1的项数1.2.变形公式an=amqn-m,此公式中q的指数也可以这样记:指数为等号前面的项an的项数n减去等号后面的项am的项数m.an=a1qn-1过关自诊1.判断正误.(正确的画√,错误的画×)(1)若等比数列{an}的首项为a1,当公比q=-1时,通项公式an=a1(-1)n-1.(
)(2)已知等比数列{an}的首项为a1,第n项为an,公比为q,则qn-1=.(
)√√2.若等比数列{an}的首项为a1,当公比q=1时,通项公式有什么特征?提示an=a1.3.根据等比数列的通项公式,等比数列的第1,3,5,7,…项的符号有什么特征?提示由于a3=a1q2,a5=a1q4,…,因此等比数列的第1,3,5,7,…项的符号相同.知识点3等比中项在两个数a,b之间插入数G,使a,G,b成等比数列,则G称为a与b的
.
名师点睛只有两个非零数a,b同号时,这两个数才有等比中项,且等比中项有两个,即若G为a与b的等比中项,则G=±.等比中项
过关自诊1.判断正误.(正确的画√,错误的画×)(1)在一个等比数列中,从第二项起,每一项(有穷数列的末项除外)都是它的前一项和后一项的等比中项.(
)(2)若三个数a,b,c成等比数列,则ac>0.(
)2.若b2=ac,则a,b,c一定成等比数列吗?√√提示不一定.若非零实数a,b,c满足b2=ac,则a,b,c一定成等比数列.重难探究·能力素养速提升探究点一等比数列通项公式的应用【例1】
在等比数列{an}中,求解下列问题:(1)若a2=3,a5=,求{an}的通项公式;(2)若a2=4,q=2,an=128,求n;(3)若a2+a5=18,a3+a6=9,求a7.(2)由a2=4,q=2,得a1=2,所以2·2n-1=128,解得n=7.规律方法
应用等比数列通项公式解题的技巧(1)等比数列的基本量是a1,q,n和an,很多等比数列问题都可以归结为其基本量的运算问题.解决这类问题时,最核心的方法是解方程(组),即依据题目条件,先根据等比数列的通项公式建立关于a1和q的方程(组),再解方程(组),求得a1和q的值,最后解决其他问题.(2)在等比数列的基本量运算问题中,建立方程(组)进行求解时,要注意运算的技巧性,特别注意整体思想的应用.变式训练1在等比数列{an}中,a5-a1=15,a4-a2=6,求a3.探究点二等比数列的证明【例2】
在数列{an}中,若an>0,且an+1=2an+3(n∈N+).证明:数列{an+3}是等比数列.证明(方法1
定义法)∵an>0,∴an+3>0.又an+1=2an+3,∴数列{an+3}是首项为a1+3,公比为2的等比数列.(方法2
等比中项法)∵an>0,∴an+3>0.又an+1=2an+3,∴an+2=4an+9.∴(an+2+3)(an+3)=(4an+12)(an+3)=(2an+6)2=(an+1+3)2,即an+3,an+1+3,an+2+3成等比数列.∴数列{an+3}是等比数列.规律方法
证明{an}为等比数列的方法
变式训练2已知数列{an}的前n项和为Sn,且满足Sn=3-2an.求证:{an}是等比数列.证明Sn=3-2an,当n=1时,整理得a1=1;探究点三等比数列在实际问题中的应用分析
依题意,每年的沙漠面积与绿洲面积之和是确定的,另外需根据题意建立前后两年绿洲面积之间的关系,由此构造等比数列解决问题.【例3】
为了治理“沙尘暴”,西部某地区政府经过多年努力,到2023年底,将当地沙漠绿化了40%.从2024年开始,每年12%的沙漠面积被绿化,改造为绿洲(被绿化的部分叫绿洲),同时原有绿洲面积的8%又被侵蚀为沙漠.据此估计至少经过几年的绿化,才能使该地区的绿洲面积超过50%.(可参考数据lg2≈0.3,最后结果精确到整数)解
设该地区总面积为1,2023年底绿洲面积为a1=40%=,经过n年后绿洲面积为an+1,设2023年底沙漠面积为b1,经过n年后沙漠面积为bn+1,则a1+b1=1,an+bn=1.依题意,an+1由两部分组成:一部分是原有绿洲面积an减去被侵蚀的部分8%·an的剩余面积92%·an,另一部分是新绿化的12%·bn.所以规律方法
求解等比数列的实际应用问题的方法处理有关等比数列的实际应用问题时,关键是认真分析题意,建立适当的等比数列模型,再进一步利用等比数列的有关知识解决.变式训练3某工厂去年产值为a,计划十年内每年比上一年产值增长10%,若今年作为第一年,则这个工厂的产值超过2a是(
)A.从第6年起
B.从第7年起C.从第8年起
D.从第9年起C解析
由题意知,第一年的产值为a(1+10%)=1.1a,且每年的产值构成以1.1a为首项,公比为1.1的等比数列,则等比数列的通项公式an=1.1a×1.1n-1=a×1.1n.令a×1.1n>2a,即1.1n>2,又1.17<2,1.18>2,所以从第8年起,这个工厂的产值超过2a.故选C.本节要点归纳1.知识清单:(1)等比数列的概念、通项公式;(2)等比中项.2.方法归纳:定义法、等比中项法判断(证明)等比数列,累乘法推导等比数列的通项公式,方程(组)求解等比数列的基本量,数学建模求解等比数列应用题.3.注意事项:等比数列的概念强调从第2项起,“每一项与前一项之比”为“同一个常数”;证明等比数列主要是证明
(n≥2)的值是一个常数.学以致用·随堂检测促达标A级必备知识基础练123456789101112131415161718D1234567891011121314151617182.已知等比数列{an},a3=1,a5=2,则首项a1=(
)B1234567891011121314151617183.等比数列{an}的前三项分别为1,2x+1,x+2,且该数列为递增数列,则该数列第4项为(
)D当x=-1时,前三项分别为1,-1,1,不满足题意.故选D.1234567891011121314151617184.[2024甘肃武威高二阶段练习]已知数列{an}是等比数列,且a7=12,a15=3,则a11=(
)A.3 B.6C.3或-3 D.6或-6B解析
设数列{an}的公比为q,所以a11=a7q4=6.故选B.1234567891011121314151617185.《九章算术》第三章“衰分”介绍比例分配问题:“衰分”是按比例递减分配的意思,通常称递减的比例(百分比)为“衰分比”.如:甲、乙、丙、丁“衰分”得100,60,36,21.6个单位,衰分比为40%.今共有粮m(m>0)石,按甲、乙、丙、丁的顺序进行“衰分”,衰分比为20%,已知乙衰分得100石,则丁衰分得(
)A.90石
B.80石 C.51.2石 D.64石D解析
依题意丁衰分得100×(1-20%)2=64石,故选D.1234567891011121314151617186.[2024甘肃天水高三阶段练习]在等比数列{an}中,2a1+a2=5,4a4+2a5=80,则a1=(
)B解析
设等比数列{an}的公比为q,因为4a4+2a5=80,所以2a4+a5=40,所以(2a1+a2)q3=40,即5q3=40,解得q=2.1234567891011121314151617187.如果-1,a,b,c,-16成等比数列,那么ac=
,b=
.
16-4解析
设-1,a,b,c,-16构成等比数列{an},公比为q,则a1=-1,a5=-16,q4==16,q2=4,则b=a3=a1q2=-4,ac=b2=16.1234567891011121314151617188.“一尺之棰,日取其半,万世不竭”这句话出自《庄子·天下篇》,其意思为“一根一尺长的木棰,每天截取一半,永远都取不完”.设第一天这根木棰被截取一半剩下a1尺,第二天被截取剩下的一半剩下a2尺,…,第五天被截取剩下的一半剩下a5尺,则
=
.
241234567891011121314151617189.数列{an},{bn}满足下列条件:a1=0,a2=1,an+2=
(n∈N+),bn=an+1-an.(1)求证:{bn}是等比数列;(2)求{bn}的通项公式.12345678910111213141516171810.“巴赫十二平均律”是世界上通用的音乐律制,它与五度相生律、纯律并称三大律制.“十二平均律”将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都B级关键能力提升练D12345678910111213141516171811.(多选题)已知等比数列{an},若4a1,a3,2a2成等差数列,则公比q的取值可以为(
)A.1 B.-2C.2 D.-1CD解析
因为在等比数列{an}中,4a1,a3,2a2成等差数列,所以a3=2a1+a2,即q2-q-2=0,解得q=2或q=-1,故选CD.12345678910111213141516171812.现存入银行8万元,年利率为2.50%,若采用一年期自动转存业务,则第十年末的本利和为(
)A.8×1.0258万元B.8×1.0259万元C.8×1.02510万元D.8×1.02511万元C解析
由题意得,每年末的本利和依次构成以1+2.50%=1.025为公比,8×1.025为首项的等比数列,所以第十年末的本利和为8×1.025×1.02510-1=8×1.02510万元.123456789101112131415161718A123456789101112131415161718A.8 B.6C.4 D.2C12345678910111213141516171815.在数列{an}中,a1=,am+n=aman(∀m,n∈N+),则a6=
.
12345678910111213141516171816.[2023全国乙,理15]已知{an}为等比数列,a2a4a5=a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 线上课程设计 动画
- 药学课程设计指南
- 机设课程设计的模板
- 网络服务器配置课程设计
- 捅马蜂窝课程设计
- 智能可穿戴手表课程设计
- 2024年职业生涯规划教案篇
- 药品检验类课程设计论文
- 2024年移动智慧家庭工程师(高级)资格认证考试题库-上(选择题)
- 物流运输行业营销工作总结
- 2024智能变电站新一代集控站设备监控系统技术规范部分
- 企业反恐专项经费保障制度
- 电梯工程师在电梯设计中的工作内容
- 《概率论与数理统计基础》全套教学课件
- 2024国家开放大学电大本科《液压气动技术》期末试题及答案
- 肥猪销售合同模板
- 餐饮顾问合作协议
- 新教材牛津译林版高中英语必修第二册全册各单元重点语法精讲
- 两课 说课 单相桥式整流电路分析(获奖)
- 中国移动《下一代全光骨干传送网白皮书》
- 消费者行为学智慧树知到期末考试答案章节答案2024年浙江大学
评论
0/150
提交评论