2.2圆的一般方程公开课一等奖课件省赛课获奖课件_第1页
2.2圆的一般方程公开课一等奖课件省赛课获奖课件_第2页
2.2圆的一般方程公开课一等奖课件省赛课获奖课件_第3页
2.2圆的一般方程公开课一等奖课件省赛课获奖课件_第4页
2.2圆的一般方程公开课一等奖课件省赛课获奖课件_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

圆的普通方程圆的标准方程:把它展开得:的方程.任何圆的方程都能够通过展开化成形如:①请同窗们将上面的方程展开,并化简!请大家思考一下:形如的方程的曲线是不是圆?将①配办法,得:②(1)当时,②表示以为圆心、以为半径的圆;(2)当时,方程②表示一个点(3)当时,方程②不表示任何曲线.当时,②表示以为圆心、以为半径的圆;此时①称作圆的一般方程.的方程为圆的普通方程.即称形如:我们学习了圆的普通方程和圆的原则方程,请大家比较这两种方程,并归纳它们各自的特点?(1)圆的原则方程带有明显的几何的影子,圆心和半径一目了然.(2)圆的普通方程体现出明显的代数的形式与构造,更适合方程理论的运用.例1求过点M(-1,1),并与已知圆同心的圆的方程.解:将已知圆方程化为原则方程圆心C的坐标为(2,-3),半径为4,故所求圆的半径为所求圆的方程为例2求过三点的圆的方程,并求这个圆的半径长和圆心坐标.分析:由于三点不在同一直线上,因此经过三点有唯一的圆.解:设圆的方程是因为三点都在圆上,所以它们的坐标都是方程①的解,把它们的坐标依次代入方程①,得到关于D,E,F的一个三元一次方程组①解这个方程组,得因此,所求圆的方程是将方程化成原则方程,得所以圆的圆心坐标是(4,-3),半径长求圆的方程惯用“待定系数法”,用“待定系数法”求圆的方程的大致环节是:①根据题意,选择原则方程或普通方程;②根据条件列出有关a,b,r或D,E,F的方程组;③解出a,b,r或D,E,F,代入原则方程或普通方程.有关何时设圆的原则方程,何时设圆的普通方程:普通说来,如果由已知条件容易求圆心的坐标、半径或需要用圆心的坐标、半径列方程的问题,往往设圆的原则方程;如果已知条件和圆心坐标或半径都无直接关系,往往设圆的普通方程.再看下例:例3求圆心在直线l:x+y=0上,且过两圆的交点的圆的方程.解:得两圆交点为(-4,0),(0,2).设所求圆的方程为由于两点在所求圆上,且圆心在直线l上所以得方程组为故所求圆的方程为:课堂练习1.求下列各圆的普通方程:(1)过点A(5,1),圆心在点C(8,-3);(2)过三点A(-1,5)、B(5,5)、C(6,-2).答案:课堂练习2.求经过两圆和的交点,并且圆心在直线x-

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论