版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省南阳市南阳市第一中学2025年高三下学期3月自评考试数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图是计算值的一个程序框图,其中判断框内应填入的条件是()A.B.C.D.2.已知盒中有3个红球,3个黄球,3个白球,且每种颜色的三个球均按,,编号,现从中摸出3个球(除颜色与编号外球没有区别),则恰好不同时包含字母,,的概率为()A. B. C. D.3.的二项展开式中,的系数是()A.70 B.-70 C.28 D.-284.已知,若方程有唯一解,则实数的取值范围是()A. B.C. D.5.如图,已知三棱锥中,平面平面,记二面角的平面角为,直线与平面所成角为,直线与平面所成角为,则()A. B. C. D.6.已知全集,函数的定义域为,集合,则下列结论正确的是A. B.C. D.7.设分别是双曲线的左右焦点若双曲线上存在点,使,且,则双曲线的离心率为()A. B.2 C. D.8.已知,若对任意,关于x的不等式(e为自然对数的底数)至少有2个正整数解,则实数a的取值范围是()A. B. C. D.9.已知函数有两个不同的极值点,,若不等式有解,则的取值范围是()A. B.C. D.10.已知向量,是单位向量,若,则()A. B. C. D.11.命题:存在实数,对任意实数,使得恒成立;:,为奇函数,则下列命题是真命题的是()A. B. C. D.12.若复数满足,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知点是抛物线的准线上一点,F为抛物线的焦点,P为抛物线上的点,且,若双曲线C中心在原点,F是它的一个焦点,且过P点,当m取最小值时,双曲线C的离心率为______.14.(x+y)(2x-y)5的展开式中x3y3的系数为________.15.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.如图,平行四边形形状的纸片是由六个边长为1的正三角形构成的,将它沿虚线折起来,可以得到如图所示粽子形状的六面体,则该六面体的体积为____;若该六面体内有一球,则该球体积的最大值为____.16.已知函数对于都有,且周期为2,当时,,则________________________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的左、右焦点分别为直线垂直于轴,垂足为,与抛物线交于不同的两点,且过的直线与椭圆交于两点,设且.(1)求点的坐标;(2)求的取值范围.18.(12分)已知函数,其中为自然对数的底数,.(1)若曲线在点处的切线与直线平行,求的值;(2)若,问函数有无极值点?若有,请求出极值点的个数;若没有,请说明理由.19.(12分)在国家“大众创业,万众创新”战略下,某企业决定加大对某种产品的研发投入.为了对新研发的产品进行合理定价,将该产品按事先拟定的价格试销,得到一组检测数据如表所示:试销价格(元)产品销量(件)已知变量且有线性负相关关系,现有甲、乙、丙三位同学通过计算求得回归直线方程分别为:甲;乙;丙,其中有且仅有一位同学的计算结果是正确的.(1)试判断谁的计算结果正确?(2)若由线性回归方程得到的估计数据与检测数据的误差不超过,则称该检测数据是“理想数据”,现从检测数据中随机抽取个,求“理想数据”的个数的分布列和数学期望.20.(12分)数列满足,,其前n项和为,数列的前n项积为.(1)求和数列的通项公式;(2)设,求的前n项和,并证明:对任意的正整数m、k,均有.21.(12分)已知等差数列{an}的各项均为正数,Sn为等差数列{an}的前n项和,.(1)求数列{an}的通项an;(2)设bn=an⋅3n,求数列{bn}的前n项和Tn.22.(10分)已知△ABC的内角A,B,C的对边分别为a,b,c,若c=2a,bsinB﹣asinA=asinC.(Ⅰ)求sinB的值;(Ⅱ)求sin(2B+)的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】
根据计算结果,可知该循环结构循环了5次;输出S前循环体的n的值为12,k的值为6,进而可得判断框内的不等式.【详解】因为该程序图是计算值的一个程序框圈所以共循环了5次所以输出S前循环体的n的值为12,k的值为6,即判断框内的不等式应为或所以选C本题考查了程序框图的简单应用,根据结果填写判断框,属于基础题.2.B【解析】
首先求出基本事件总数,则事件“恰好不同时包含字母,,”的对立事件为“取出的3个球的编号恰好为字母,,”,记事件“恰好不同时包含字母,,”为,利用对立事件的概率公式计算可得;【详解】解:从9个球中摸出3个球,则基本事件总数为(个),则事件“恰好不同时包含字母,,”的对立事件为“取出的3个球的编号恰好为字母,,”记事件“恰好不同时包含字母,,”为,则.故选:B本题考查了古典概型及其概率计算公式,考查了排列组合的知识,解答的关键在于正确理解题意,属于基础题.3.A【解析】试题分析:由题意得,二项展开式的通项为,令,所以的系数是,故选A.考点:二项式定理的应用.4.B【解析】
求出的表达式,画出函数图象,结合图象以及二次方程实根的分布,求出的范围即可.【详解】解:令,则,则,故,如图示:由,得,函数恒过,,由,,可得,,,若方程有唯一解,则或,即或;当即图象相切时,根据,,解得舍去),则的范围是,故选:.本题考查函数的零点问题,考查函数方程的转化思想和数形结合思想,属于中档题.5.A【解析】
作于,于,分析可得,,再根据正弦的大小关系判断分析得,再根据线面角的最小性判定即可.【详解】作于,于.因为平面平面,平面.故,故平面.故二面角为.又直线与平面所成角为,因为,故.故,当且仅当重合时取等号.又直线与平面所成角为,且为直线与平面内的直线所成角,故,当且仅当平面时取等号.故.故选:A本题主要考查了线面角与线线角的大小判断,需要根据题意确定角度的正弦的关系,同时运用线面角的最小性进行判定.属于中档题.6.A【解析】
求函数定义域得集合M,N后,再判断.【详解】由题意,,∴.故选A.本题考查集合的运算,解题关键是确定集合中的元素.确定集合的元素时要注意代表元形式,集合是函数的定义域,还是函数的值域,是不等式的解集还是曲线上的点集,都由代表元决定.7.A【解析】
由及双曲线定义得和(用表示),然后由余弦定理得出的齐次等式后可得离心率.【详解】由题意∵,∴由双曲线定义得,从而得,,在中,由余弦定理得,化简得.故选:A.本题考查求双曲线的离心率,解题关键是应用双曲线定义用表示出到两焦点的距离,再由余弦定理得出的齐次式.8.B【解析】
构造函数(),求导可得在上单调递增,则,问题转化为,即至少有2个正整数解,构造函数,,通过导数研究单调性,由可知,要使得至少有2个正整数解,只需即可,代入可求得结果.【详解】构造函数(),则(),所以在上单调递增,所以,故问题转化为至少存在两个正整数x,使得成立,设,,则,当时,单调递增;当时,单调递增.,整理得.故选:B.本题考查导数在判断函数单调性中的应用,考查不等式成立问题中求解参数问题,考查学生分析问题的能力和逻辑推理能力,难度较难.9.C【解析】
先求导得(),由于函数有两个不同的极值点,,转化为方程有两个不相等的正实数根,根据,,,求出的取值范围,而有解,通过分裂参数法和构造新函数,通过利用导数研究单调性、最值,即可得出的取值范围.【详解】由题可得:(),因为函数有两个不同的极值点,,所以方程有两个不相等的正实数根,于是有解得.若不等式有解,所以因为.设,,故在上单调递增,故,所以,所以的取值范围是.故选:C.本题考查利用导数研究函数单调性、最值来求参数取值范围,以及运用分离参数法和构造函数法,还考查分析和计算能力,有一定的难度.10.C【解析】
设,根据题意求出的值,代入向量夹角公式,即可得答案;【详解】设,,是单位向量,,,,联立方程解得:或当时,;当时,;综上所述:.故选:C.本题考查向量的模、夹角计算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意的两种情况.11.A【解析】
分别判断命题和的真假性,然后根据含有逻辑联结词命题的真假性判断出正确选项.【详解】对于命题,由于,所以命题为真命题.对于命题,由于,由解得,且,所以是奇函数,故为真命题.所以为真命题.、、都是假命题.故选:A本小题主要考查诱导公式,考查函数的奇偶性,考查含有逻辑联结词命题真假性的判断,属于基础题.12.C【解析】
化简得到,,再计算复数模得到答案.【详解】,故,故,.故选:.本题考查了复数的化简,共轭复数,复数模,意在考查学生的计算能力.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
由点坐标可确定抛物线方程,由此得到坐标和准线方程;过作准线的垂线,垂足为,根据抛物线定义可得,可知当直线与抛物线相切时,取得最小值;利用抛物线切线的求解方法可求得点坐标,根据双曲线定义得到实轴长,结合焦距可求得所求的离心率.【详解】是抛物线准线上的一点抛物线方程为,准线方程为过作准线的垂线,垂足为,则设直线的倾斜角为,则当取得最小值时,最小,此时直线与抛物线相切设直线的方程为,代入得:,解得:或双曲线的实轴长为,焦距为双曲线的离心率故答案为:本题考查双曲线离心率的求解问题,涉及到抛物线定义和标准方程的应用、双曲线定义的应用;关键是能够确定当取得最小值时,直线与抛物线相切,进而根据抛物线切线方程的求解方法求得点坐标.14.40【解析】
先求出的展开式的通项,再求出即得解.【详解】设的展开式的通项为,令r=3,则,令r=2,则,所以展开式中含x3y3的项为.所以x3y3的系数为40.故答案为:40本题主要考查二项式定理求指定项的系数,意在考查学生对这些知识的理解掌握水平.15.【解析】
(1)先算出正四面体的体积,六面体的体积是正四面体体积的倍,即可得出该六面体的体积;(2)由图形的对称性得,小球的体积要达到最大,即球与六个面都相切时,求出球的半径,再代入球的体积公式可得答案.【详解】(1)每个三角形面积是,由对称性可知该六面是由两个正四面合成的,可求出该四面体的高为,故四面体体积为,因此该六面体体积是正四面体的2倍,所以六面体体积是;(2)由图形的对称性得,小球的体积要达到最大,即球与六个面都相切时,由于图像的对称性,内部的小球要是体积最大,就是球要和六个面相切,连接球心和五个顶点,把六面体分成了六个三棱锥设球的半径为,所以,所以球的体积.故答案为:;.本题考查由平面图形折成空间几何体、考查空间几何体的的表面积、体积计算,考查逻辑推理能力和空间想象能力求解球的体积关键是判断在什么情况下,其体积达到最大,考查运算求解能力.16.【解析】
利用,且周期为2,可得,得.【详解】∵,且周期为2,∴,又当时,,∴,故答案为:本题考查函数的周期性与对称性的应用,考查转化能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2).【解析】
(1)设出的坐标,代入,结合在抛物线上,求得两点的横坐标,进而求得点的坐标.(2)设出直线的方程,联立直线的方程和椭圆方程,写出韦达定理,结合,求得的表达式,结合二次函数的性质求得的取值范围.【详解】(1)可知,设则,又,所以解得所以.(2)据题意,直线的斜率必不为所以设将直线方程代入椭圆的方程中,整理得,设则①②因为所以且将①式平方除以②式得所以又解得又,所以令,则所以本小题主要考查直线和抛物线的位置关系,考查直线和椭圆的位置关系,考查向量数量积的坐标运算,考查向量模的坐标运算,考查化归与转化的数学思想方法,考查运算求解能力,属于难题.18.(1)(2)没有,理由见解析【解析】
(1)求导,研究函数在x=0处的导数,等于切线斜率,即得解;(2)对f(x)求导,构造,可证得,得到,即得解【详解】(1)由题意得,∵曲线在点处的切线与直线平行,∴切线的斜率为,解得.(2)当时,,,设,则,则函数在区间上单调递减,在区间上单调递增,又函数,故恒成立,∴函数在定义域内单调递增,函数不存在极值点.本题考查了导数在切线问题和函数极值问题中的应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.19.(1)乙同学正确(2)分布列见解析,【解析】
(1)由已知可得甲不正确,求出样本中心点代入验证,即可得出结论;(2)根据(1)中得到的回归方程,求出估值,得到“理想数据”的个数,确定“理想数据”的个数的可能值,并求出概率,得到分布列,即可求解.【详解】(1)已知变量具有线性负相关关系,故甲不正确,,代入两个回归方程,验证乙同学正确,故回归方程为:(2)由(1)得到的回归方程,计算估计数据如下表:“理想数据”有3个,故“理想数据”的个数的取值为:.,,于是“理想数据”的个数的分布列本题考查样本回归中心点与线性回归直线方程关系,以及离散型随机变量的分布列和期望,意在考查逻辑推理、数学计算能力,属于中档题.20.(1),;(2),证明见解析【解析】
(1)利用已知条件建立等量关系求出数列的通项公式.(2)利用裂项相消法求出数列的和,进一步利用放缩法求出结论.【详解】(1),,得是公比为的等比数列,,,当时,数列的前项积为,则,两式相除得,得,又得,;(2),故.本题考查的知识要点:数列的通项公式的求法及应用,数列的前项和的应用,裂项相消法在数列求和中的应用,主要考查学生的运算能力和转换能力,属于中档题.21.(1).(2)【解析】
(1)先设等差数列{an}的公差为d(d>0),然后根据等差数列的通项公式及已知条件可列
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 制作和服培训行业相关项目经营管理报告
- 床出租行业营销策略方案
- 罐头工业用机器设备项目营销计划书
- 医疗器械出租行业相关项目经营管理报告
- 冷链自动化技术行业市场调研分析报告
- 2024年员工岗位调整协议书
- 2024年半包式建筑工程合同
- 实验室机器人产业链招商引资的调研报告
- 非纸制婴儿围嘴项目营销计划书
- 2024年国际物流与供应链管理服务合同
- 项目管理机构及人员配备表
- 空乘大学生职业生涯规划
- 使用电器安全教育课件
- 黄芪对慢性疲劳综合征康复中的临床应用及相关机制探究
- 动物的生长激素与动物发育
- 《实名认证》课件
- 语文教学之学理
- 餐饮创业湘菜计划书
- 销售意识培训课件
- 幼儿园公开课:大班美术创意《橙子变变变 》课件
- 高效数据标注流程
评论
0/150
提交评论