河南省南阳市第十三中学2025届中考冲刺模拟(四)数学试题试卷含解析_第1页
河南省南阳市第十三中学2025届中考冲刺模拟(四)数学试题试卷含解析_第2页
河南省南阳市第十三中学2025届中考冲刺模拟(四)数学试题试卷含解析_第3页
河南省南阳市第十三中学2025届中考冲刺模拟(四)数学试题试卷含解析_第4页
河南省南阳市第十三中学2025届中考冲刺模拟(四)数学试题试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省南阳市第十三中学2025届中考冲刺模拟(四)数学试题试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.在实数0,-π,,-4中,最小的数是()A.0 B.-π C. D.-42.对于命题“如果∠1+∠1=90°,那么∠1≠∠1.”能说明它是假命题的是()A.∠1=50°,∠1=40° B.∠1=40°,∠1=50°C.∠1=30°,∠1=60° D.∠1=∠1=45°3.已知为单位向量,=,那么下列结论中错误的是()A.∥ B. C.与方向相同 D.与方向相反4.如图,⊙O是等边△ABC的外接圆,其半径为3,图中阴影部分的面积是()A.π B. C.2π D.3π5.大箱子装洗衣粉36千克,把大箱子里的洗衣粉分装在4个大小相同的小箱子里,装满后还剩余2千克洗衣粉,则每个小箱子装洗衣粉(

)A.6.5千克B.7.5千克C.8.5千克D.9.5千克6.将抛物线y=2x2向左平移3个单位得到的抛物线的解析式是()A.y=2x2+3 B.y=2x2﹣3C.y=2(x+3)2 D.y=2(x﹣3)27.下列运算结果正确的是()A.3a﹣a=2B.(a﹣b)2=a2﹣b2C.a(a+b)=a2+bD.6ab2÷2ab=3b8.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度与时间之间的关系的图象是()A. B. C. D.9.根据下表中的二次函数的自变量与函数的对应值,可判断该二次函数的图象与轴().

…A.只有一个交点 B.有两个交点,且它们分别在轴两侧C.有两个交点,且它们均在轴同侧 D.无交点10.计算的结果是()A.1 B.-1 C. D.二、填空题(共7小题,每小题3分,满分21分)11.一次函数y=kx+3的图象与坐标轴的两个交点之间的距离为5,则k的值为______.12.如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点.若AC=,∠AEO=120°,则FC的长度为_____.13.如图所示,一只蚂蚁从A点出发到D,E,F处寻觅食物.假定蚂蚁在每个岔路口都等可能的随机选择一条向左下或右下的路径(比如A岔路口可以向左下到达B处,也可以向右下到达C处,其中A,B,C都是岔路口).那么,蚂蚁从A出发到达E处的概率是_____.14.对于实数a,b,定义运算“*”:a*b=,例如:因为4>2,所以4*2=42﹣4×2=8,则(﹣3)*(﹣2)=___________.15.已知一组数据,,,,的平均数是,那么这组数据的方差等于________.16.如图,在△ABC中,DE∥BC,BF平分∠ABC,交DE的延长线于点F,若AD=1,BD=2,BC=4,则EF=________.17.化简÷=_____.三、解答题(共7小题,满分69分)18.(10分)计算:÷+8×2﹣1﹣(+1)0+2•sin60°.19.(5分)如图,平面直角坐标系xOy中,已知点A(0,3),点B(,0),连接AB,若对于平面内一点C,当△ABC是以AB为腰的等腰三角形时,称点C是线段AB的“等长点”.(1)在点C1(﹣2,3+2),点C2(0,﹣2),点C3(3+,﹣)中,线段AB的“等长点”是点________;(2)若点D(m,n)是线段AB的“等长点”,且∠DAB=60°,求点D的坐标;(3)若直线y=kx+3k上至少存在一个线段AB的“等长点”,求k的取值范围.20.(8分)某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有______人,在扇形统计图中,“乒乓球”的百分比为______%,如果学校有800名学生,估计全校学生中有______人喜欢篮球项目.(2)请将条形统计图补充完整.(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.21.(10分)如图,四边形ABCD的外接圆为⊙O,AD是⊙O的直径,过点B作⊙O的切线,交DA的延长线于点E,连接BD,且∠E=∠DBC.(1)求证:DB平分∠ADC;(2)若EB=10,CD=9,tan∠ABE=,求⊙O的半径.22.(10分)(14分)如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>2)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.(1)求抛物线的解析式;(2)当0<t≤8时,求△APC面积的最大值;(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.23.(12分)先化简,再求值:(1﹣)÷,其中a=﹣1.24.(14分)小明有两双不同的运动鞋放在一起,上学时间到了,他准备穿鞋上学.他随手拿出一只,恰好是右脚鞋的概率为;他随手拿出两只,请用画树状图或列表法求恰好为一双的概率.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】

根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.【详解】∵正数大于0和一切负数,∴只需比较-π和-1的大小,∵|-π|<|-1|,∴最小的数是-1.故选D.此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.2、D【解析】

能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.【详解】“如果∠1+∠1=90°,那么∠1≠∠1.”能说明它是假命题为∠1=∠1=45°.故选:D.考查了命题与定理的知识,理解能说明它是假命题的反例的含义是解决本题的关键.3、C【解析】

由向量的方向直接判断即可.【详解】解:为单位向量,=,所以与方向相反,所以C错误,故选C.本题考查了向量的方向,是基础题,较简单.4、D【解析】

根据等边三角形的性质得到∠A=60°,再利用圆周角定理得到∠BOC=120°,然后根据扇形的面积公式计算图中阴影部分的面积即可.【详解】∵△ABC为等边三角形,∴∠A=60°,∴∠BOC=2∠A=120°,∴图中阴影部分的面积==3π.故选D.本题考查了三角形的外接圆与外心、圆周角定理及扇形的面积公式,求得∠BOC=120°是解决问题的关键.5、C【解析】【分析】设每个小箱子装洗衣粉x千克,根据题意列方程即可.【详解】设每个小箱子装洗衣粉x千克,由题意得:4x+2=36,解得:x=8.5,即每个小箱子装洗衣粉8.5千克,故选C.【点睛】本题考查了列一元一次方程解实际问题,弄清题意,找出等量关系是解答本题的关键.6、C【解析】

按照“左加右减,上加下减”的规律,从而选出答案.【详解】y=2x2向左平移3个单位得到的抛物线的解析式是y=2(x+3)2,故答案选C.本题主要考查了抛物线的平移以及抛物线解析式的变换规律,解本题的要点在于熟知“左加右减,上加下减”的变化规律.7、D【解析】

各项计算得到结果,即可作出判断.【详解】解:A、原式=2a,不符合题意;

B、原式=a2-2ab+b2,不符合题意;

C、原式=a2+ab,不符合题意;D、原式=3b,符合题意;

故选D此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.8、C【解析】

首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢.【详解】根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢。故选:C.此题考查函数的图象,解题关键在于观察图形9、B【解析】

根据表中数据可得抛物线的对称轴为x=1,抛物线的开口方向向上,再根据抛物线的对称性即可作出判断.【详解】解:由题意得抛物线的对称轴为x=1,抛物线的开口方向向上则该二次函数的图像与轴有两个交点,且它们分别在轴两侧故选B.本题考查二次函数的性质,属于基础应用题,只需学生熟练掌握抛物线的对称性,即可完成.10、C【解析】

原式通分并利用同分母分式的减法法则计算,即可得到结果.【详解】解:==,故选:C.此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.二、填空题(共7小题,每小题3分,满分21分)11、【解析】

首先求出一次函数y=kx+3与y轴的交点坐标;由于函数与x轴的交点的纵坐标是0,可以设横坐标是a,然后利用勾股定理求出a的值;再把(a,0)代入一次函数的解析式y=kx+3,从而求出k的值.【详解】在y=kx+3中令x=0,得y=3,则函数与y轴的交点坐标是:(0,3);设函数与x轴的交点坐标是(a,0),根据勾股定理得到a2+32=25,解得a=±4;当a=4时,把(4,0)代入y=kx+3,得k=;当a=-4时,把(-4,0)代入y=kx+3,得k=;故k的值为或考点:本体考查的是根据待定系数法求一次函数解析式解决本题的关键是求出函数与y轴的交点坐标,然后根据勾股定理求得函数与x轴的交点坐标,进而求出k的值.12、1【解析】

先根据矩形的性质,推理得到OF=CF,再根据Rt△BOF求得OF的长,即可得到CF的长.【详解】解:∵EF⊥BD,∠AEO=120°,

∴∠EDO=30°,∠DEO=60°,

∵四边形ABCD是矩形,

∴∠OBF=∠OCF=30°,∠BFO=60°,

∴∠FOC=60°-30°=30°,

∴OF=CF,

又∵Rt△BOF中,BO=BD=AC=,

∴OF=tan30°×BO=1,

∴CF=1,

故答案为:1.本题考查矩形的性质以及解直角三角形的运用,解题关键是掌握:矩形的对角线相等且互相平分.13、【解析】试题分析:如图所示,一只蚂蚁从点出发后有ABD、ABE、ACE、ACF四条路,所以蚂蚁从出发到达处的概率是.考点:概率.14、-1.【解析】解:∵-3<-2,∴(-3)*(-2)=(-3)-(-2)=-1.故答案为-1.15、5.2【解析】分析:首先根据平均数求出x的值,然后根据方差的计算法则进行计算即可得出答案.详解:∵平均数为6,∴(3+4+6+x+9)÷5=6,解得:x=8,∴方差为:.点睛:本题主要考查的是平均数和方差的计算法则,属于基础题型.明确计算公式是解决这个问题的关键.16、【解析】

由DE∥BC可得出△ADE∽△ABC,根据相似三角形的性质和平行线的性质解答即可.【详解】∵DE∥BC,∴∠F=∠FBC,∵BF平分∠ABC,∴∠DBF=∠FBC,∴∠F=∠DBF,∴DB=DF,∵DE∥BC,∴△ADE∽△ABC,∴,即,解得:DE=,∵DF=DB=2,∴EF=DF-DE=2-=,故答案为.此题考查相似三角形的判定和性质,关键是由DE∥BC可得出△ADE∽△ABC.17、x+1【解析】分析:根据根式的除法,先因式分解后,把除法化为乘法,再约分即可.详解:解:原式=÷=•(x+1)(x﹣1)=x+1,故答案为x+1.点睛:此题主要考查了分式的运算,关键是要把除法问题转化为乘法运算即可,注意分子分母的因式分解.三、解答题(共7小题,满分69分)18、6+.【解析】

利用负整数指数幂、零指数幂的意义和特殊角的三角函数值进行计算.【详解】解:原式=+8×﹣1+2×=3+4﹣1+=6+.本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.19、(1)C1,C3;(2)D(﹣,0)或D(,3);(3)﹣≤k≤【解析】

(1)直接利用线段AB的“等长点”的条件判断;(2)分两种情况讨论,利用对称性和垂直的性质即可求出m,n;(3)先判断出直线y=kx+3与圆A,B相切时,如图2所示,利用相似三角形的性质即可求出结论.【详解】(1)∵A(0,3),B(,0),∴AB=2,∵点C1(﹣2,3+2),∴AC1==2,∴AC1=AB,∴C1是线段AB的“等长点”,∵点C2(0,﹣2),∴AC2=5,BC2==,∴AC2≠AB,BC2≠AB,∴C2不是线段AB的“等长点”,∵点C3(3+,﹣),∴BC3==2,∴BC3=AB,∴C3是线段AB的“等长点”;故答案为C1,C3;(2)如图1,在Rt△AOB中,OA=3,OB=,∴AB=2,tan∠OAB==,∴∠OAB=30°,当点D在y轴左侧时,∵∠DAB=60°,∴∠DAO=∠DAB﹣∠BAO=30°,∵点D(m,n)是线段AB的“等长点”,∴AD=AB,∴D(﹣,0),∴m=,n=0,当点D在y轴右侧时,∵∠DAB=60°,∴∠DAO=∠BAO+∠DAB=90°,∴n=3,∵点D(m,n)是线段AB的“等长点”,∴AD=AB=2,∴m=2;∴D(,3)(3)如图2,∵直线y=kx+3k=k(x+3),∴直线y=kx+3k恒过一点P(﹣3,0),∴在Rt△AOP中,OA=3,OP=3,∴∠APO=30°,∴∠PAO=60°,∴∠BAP=90°,当PF与⊙B相切时交y轴于F,∴PA切⊙B于A,∴点F就是直线y=kx+3k与⊙B的切点,∴F(0,﹣3),∴3k=﹣3,∴k=﹣,当直线y=kx+3k与⊙A相切时交y轴于G切点为E,∴∠AEG=∠OPG=90°,∴△AEG∽△POG,∴,∴=,解得:k=或k=(舍去)∵直线y=kx+3k上至少存在一个线段AB的“等长点”,∴﹣≤k≤,此题是一次函数综合题,主要考查了新定义,锐角三角函数,直角三角形的性质,等腰三角形的性质,对称性,解(1)的关键是理解新定义,解(2)的关键是画出图形,解(3)的关键是判断出直线和圆A,B相切时是分界点.20、(1)5,20,80;(2)图见解析;(3).【解析】【分析】(1)根据喜欢跳绳的人数以及所占的比例求得总人数,然后用总人数减去喜欢跳绳、乒乓球、其它的人数即可得;(2)用乒乓球的人数除以总人数即可得;(3)用800乘以喜欢篮球人数所占的比例即可得;(4)根据(1)中求得的喜欢篮球的人数即可补全条形图;(5)画树状图可得所有可能的情况,根据树状图求得2名同学恰好是1名女同学和1名男同学的结果,根据概率公式进行计算即可.【详解】(1)调查的总人数为20÷40%=50(人),喜欢篮球项目的同学的人数=50﹣20﹣10﹣15=5(人);(2)“乒乓球”的百分比==20%;(3)800×=80,所以估计全校学生中有80人喜欢篮球项目;(4)如图所示,(5)画树状图为:共有20种等可能的结果数,其中所抽取的2名同学恰好是1名女同学和1名男同学的结果数为12,所以所抽取的2名同学恰好是1名女同学和1名男同学的概率=.21、(1)详见解析;(2)OA=.【解析】

(1)连接OB,证明∠ABE=∠ADB,可得∠ABE=∠BDC,则∠ADB=∠BDC;

(2)证明△AEB∽△CBD,AB=x,则BD=2x,可求出AB,则答案可求出.【详解】(1)证明:连接OB,∵BE为⊙O的切线,∴OB⊥BE,∴∠OBE=90°,∴∠ABE+∠OBA=90°,∵OA=OB,∴∠OBA=∠OAB,∴∠ABE+∠OAB=90°,∵AD是⊙O的直径,∴∠OAB+∠ADB=90°,∴∠ABE=∠ADB,∵四边形ABCD的外接圆为⊙O,∴∠EAB=∠C,∵∠E=∠DBC,∴∠ABE=∠BDC,∴∠ADB=∠BDC,即DB平分∠ADC;(2)解:∵tan∠ABE=,∴设AB=x,则BD=2x,∴,∵∠BAE=∠C,∠ABE=∠BDC,∴△AEB∽△CBD,∴,∴,解得x=3,∴AB=x=15,∴OA=.本题考查切线的性质、解直角三角形、勾股定理等知识,解题的关键是学会添加常用辅助线解决问题.22、(1)y=14x2-2x+3【解析】试题分析:(1)首先利用根与系数的关系得出:x1+x2=8试题解析:解:(1)由题意知x1、x2是方程mx2﹣8mx+4m+2=0的两根,∴x1+x2=8,由.解得:.∴B(2,0)、C(6,0)则4m﹣16m+4m+2=0,解得:m=,∴该抛物线解析式为:y=;.(2)可求得A(0,3)设直线AC的解析式为:y=kx+b,∵∴∴直线AC的解析式为:y=﹣x+3,要构成△APC,显然t≠6,分两种情况讨论:当0<t<6时,设直线l与AC交点为F,则:F(t,﹣),∵P(t,),∴PF=,∴S△APC=S△APF+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论