




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省扬州市江都区等六校2024年中考数学全真模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列各式中,互为相反数的是()
A.(-3)2和一3?B.(-3>和3?C.(-2)3和—23D.|-213^|-23|
2.如图,在矩形ABCD中,AD=&AB,/BAD的平分线交BC于点E,DHLAE于点H,连接BH并延长交CD
于点F,连接DE交BF于点O,下列结论:①NAED=NCED;®OE=OD;③BH=HF;@BC-CF=2HE;⑤AB=HF,
其中正确的有()
C.4个D.5个
3.计算6-07的值为()
A.-276B.-4C.—2币D.-2
4.关于x的一元二次方程x2-2x+k+2=0有实数根,则k的取值范围在数轴上表示正确的是()
5.小桐把一副直角三角尺按如图所示的方式摆放在一起,其中NE=90,ZC=90,NA=45,ND=30,则
4+N2等于()
A.150B.180C.210D.270
6.正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是()
A.36°B.54°C.72°D.108°
7.如图所示的几何体是一个圆锥,下面有关它的三视图的结论中,正确的是()
A.主视图是中心对称图形
B.左视图是中心对称图形
C.主视图既是中心对称图形又是轴对称图形
D.俯视图既是中心对称图形又是轴对称图形
8.二次函数y=ax?+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=£在同一
X
平面直角一坐标系中的图象可能是()
△APQ的面积为y,则y与X的函数图象正确的是()
B.
10.如图,二次函数丫=2乂2+6*的图象开口向下,且经过第三象限的点P.若点P的横坐标为-1,则一次函数
y=(a—b)x+b的图象大致是()
V
A.4(2X+2)B.8x+8C.8(x+1)D.4(x+1)
12.由一些大小相同的小正方形搭成的几何体的左视图和俯视图,如图所示,则搭成该几何体的小正方形的个数最少
A.4B.5C.6D.7
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,在x轴的正半轴上依次间隔相等的距离取点Al,A2,A3,A4,…,An,分别过这些点做x轴的垂线与反比
例函数y=L的图象相交于点,P1,P2,P3,P4,…Pn,再分别过P2,P3,P4,…Pn作P2B」A1P1,P3B2_LA2P2,P4B3,A3P3~.,
X
PnBn-1-LAn-lPn-l,垂足分别为Bl,B2,B3,B4,…,Bn-1,连接P1P2,P2P3,P3P4,・・・,Pn-lPn,得到一,组RtAP1B1P2,
RtAP2B2P3,RtAP3B3P4,RtAPn-lBniPn,则R3Pn-iBn-iPn的面积为.
14.关于x的一元二次方程x2-2x+m-l=0有两个实数根,则m的取值范围是.
15.四边形A5CD中,向量43+6。+。。=.
16.八位女生的体重(单位:kg)分别为36、42、38、40、42、35、45、38,则这八位女生的体重的中位数为kg.
17.如果点A(―1,4)、B(wi,4)在抛物线y=a(x—1)2+h_h,那么机的值为.
18.计算“1。+/=.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)某文具店购进A,B两种钢笔,若购进A种钢笔2支,B种钢笔3支,共需90元;购进A种钢笔3支,
B种钢笔5支,共需145元.
(1)求A、B两种钢笔每支各多少元?
(2)若该文具店要购进A,B两种钢笔共90支,总费用不超过1588元,并且A种钢笔的数量少于B种钢笔的数量,
那么该文具店有哪几种购买方案?
(3)文具店以每支30元的价格销售B种钢笔,很快销售一空,于是,文具店决定在进价不变的基础上再购进一批B
种钢笔,涨价卖出,经统计,B种钢笔售价为30元时,每月可卖68支;每涨价1元,每月将少卖4支,设文具店将
新购进的B种钢笔每支涨价a元(a为正整数),销售这批钢笔每月获利W元,试求W与a之间的函数关系式,并且
求出B种铅笔销售单价定为多少元时,每月获利最大?最大利润是多少元?
20.(6分)如图,已知等边△ABC,AB=4,以AB为直径的半圆与BC边交于点D,过点D作DELAC,垂足为E,
过点E作EF_LAB,垂足为F,连接FD.
(1)求证:DE是。O的切线;
(2)求EF的长.
2L(6分)已知关于心丫的二元一次方程组[八ax+一by〃=l尸"+3的解为\1x尸=l一1'求心b的值.
22.(8分)如图,已知在。O中,AB是。O的直径,AC=8,BC=1.求。。的面积;若D为OO上一点,且△ABD
为等腰三角形,求CD的长.
23.(8分)某学校准备采购一批茶艺耗材和陶艺耗材.经查询,如果按照标价购买两种耗材,当购买茶艺耗材的数量是
陶艺耗材数量的2倍时,购买茶艺耗材共需要18000元,购买陶艺耗材共需要12000元,且一套陶艺耗材单价比一套
茶艺耗材单价贵150元.求一套茶艺耗材、一套陶艺耗材的标价分别是多少元?学校计划购买相同数量的茶艺耗材和陶
艺耗材.商家告知,因为周年庆,茶艺耗材的单价在标价的基础上降价2机元,陶艺耗材的单价在标价的基础降价150
元,该校决定增加采购数量,实际购买茶艺耗材和陶艺耗材的数量在原计划基础上分别增加了2.5〃?%和加%,结果
在结算时发现,两种耗材的总价相等,求利的值.
24.(10分)某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;
2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,
礼盒的售价均为60元/盒.
(1)2014年这种礼盒的进价是多少元/盒?
(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?
25.(10分)有一项工作,由甲、乙合作完成,合作一段时间后,乙改进了技术,提高了工作效率.图①表示甲、乙
合作完成的工作量y(件)与工作时间t(时)的函数图象.图②分别表示甲完成的工作量y甲(件)、乙完成的工作量
y乙(件)与工作时间t(时)的函数图象.
(1)求甲5时完成的工作量;
(2)求y甲、y乙与t的函数关系式(写出自变量t的取值范围);
(3)求乙提高工作效率后,再工作几个小时与甲完成的工作量相等?
26.(12分)如图,为了测量建筑物AB的高度」,在D处树立标杆CD,标杆的高是2m,在DB上选取观测点E、F,
从E测得标杆和建筑物的顶部C、A的仰角分别为58。、45°.从F测得C、A的仰角分别为22。、70°.求建筑物AB
的高度(精确到0.1m).(参考数据:tan22°~0.40,tan58°=1.60,tan70°=2.1.)
27.(12分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网
格中每个小正方形的边长是一个单位长度).
(1)画出△ABC向下平移4个单位长度得到的△AiBiG,点Ci的坐标是;
(2)以点B为位似中心,在网格内画出小A2B2c2,使小A2B2c2与△ABC位似,且位似比为2:1,点C2的坐标是;
(3)AA2B2c2的面积是平方单位.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
根据乘方的法则进行计算,然后根据只有符号不同的两个数互为相反数,可得答案.
【详解】
解:A.(-3)2=9,-32=-9,故(-3)2和一下互为相反数,故正确;
B.(-3)2=9,32=9,故(-3)2和32不是互为相反数,故错误;
C.(-2)3=8,—23=8,故(-2)3和—23不是互为相反数,故错误;
D.2『=8,123卜8故|-2『和'23]不是互为相反数,故错误.
故选A.
【点睛】
本题考查了有理数的乘方和相反数的定义,关键是掌握有理数乘方的运算法则.
2、C
【解析】
试题分析:,在矩形ABCD中,AE平分NBAD,
.,.ZBAE=ZDAE=45°,
/.△ABE是等腰直角三角形,
/.AE=y/2AB,
VAD=V2AB,
;.AE=AD,
又NABE=NAHD=90°
/.△ABE^AAHD(AAS),
;.BE=DH,
;.AB=BE=AH=HD,
.\ZADE=ZAED=-(180°-45°)=67.5°,
2
/.ZCED=180°-45°-67.5°=67.5°,
/.ZAED=ZCED,故①正确;
VZAHB=-(180°-45°)=67.5°,ZOHE=ZAHB(对顶角相等),
2
/.ZOHE=ZAED,
.\OE=OH,
VZOHD=90°-67.5°=22.5°,ZODH=67.5°-45°=22.5°,
.\ZOHD=ZODH,
.\OH=OD,
/.OE=OD=OH,故②正确;
,:ZEBH=90°-67.5°=22.5°,
/.ZEBH=ZOHD,
又BE=DH,ZAEB=ZHDF=45°
/.△BEH^AHDF(ASA),
/.BH=HF,HE=DF,故③正确;
由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,
/.BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;
VAB=AH,ZBAE=45°,
AABH不是等边三角形,
AAB/BH,
.•.即ABrHF,故⑤错误;
综上所述,结论正确的是①②③④共4个.
故选C.
【点睛】
考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质
3、C
【解析】
根据二次根式的运算法则即可求出答案.
【详解】
原式=四-3逝=-2若,
故选C.
【点睛】
本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.
4、C
【解析】
由一元二次方程有实数根可知△K),即可得出关于A的一元一次不等式,解之即可得出左的取值范围.
【详解】
••・关于x的一元二次方程x2-2x+k+2=Q有实数根,
/.△=(-2)2-4(*+2)>0,
解得:k(一\,
在数轴上表示为:
0^
故选C.
【点睛】
本题考查了一元二次方程根的判别式.根据一元二次方程根的情况利用根的判别式列出不等式是解题的关键.
5、C
【解析】
根据三角形的内角和定理和三角形外角性质进行解答即可.
【详解】
如图:
/1=血+㈤OA,/2=4+^EPB,
㈤OA=/COP,4PB=/CPO,
/l+/2=E+4+/COP+/CPO
=/D+/E+18O—NC
=30+90+180-90=210,
故选C.
【点睛】
本题考查了三角形内角和定理、三角形外角的性质、熟练掌握相关定理及性质以及一副三角板中各个角的度数是解题
的关键.
6、C
【解析】
正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是言=72度,
故选C.
7、D
【解析】
先得到圆锥的三视图,再根据中心对称图形和轴对称图形的定义求解即可.
【详解】
解:A、主视图不是中心对称图形,故A错误;
B、左视图不是中心对称图形,故B错误;
C、主视图不是中心对称图形,是轴对称图形,故C错误;
D、俯视图既是中心对称图形又是轴对称图形,故D正确.
故选:D.
【点睛】
本题考查简单几何体的三视图,中心对称图形和轴对称图形,熟练掌握各自的定义是解题关键.
8、C
【解析】
b
试题分析:•・•二次函数图象开口方向向下,・・・aVO,・・•对称轴为直线%=-丁>0,・・・b>0,•••与y轴的正半轴相交,
2a
c
.•.c>0,二y=ox+人的图象经过第一、二、四象限,反比例函数y=—图象在第一三象限,只有C选项图象符合.故
x
选C.
考点:L二次函数的图象;2.一次函数的图象;3.反比例函数的图象.
9、B
【解析】
•在正方形ABCD中,A8=2&,
;.AC=4,AD=DC=2&,ZDAP=ZDCA=45°,
当点Q在AD上时,PA=PQ,
;.DP=AP=x,
11,
:.S=-PQAP=-x2;
22
当点Q在DC上时,PC=PQ
CP=4-x,
1111,
.,.S=-PC-Pe=-(4-x)(4-x)=-(16-8x+x92)=-x2-4x+8;
所以该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下,
故选B.
【点睛】本题考查动点问题的函数图象,有一定难度,解题关键是注意点Q在AP、DC上这两种情况.
10、D
【解析】
【分析】根据二次函数的图象可以判断a、b、a-b的正负情况,从而可以得到一次函数经过哪几个象限,观察各选
项即可得答案.
【详解】由二次函数的图象可知,
a<0,b<0,
当x=-L时,y=a-b<0,
,y=(a—b)x+b的图象经过二、三、四象限,
观察可得D选项的图象符合,
故选D.
【点睛】本题考查二次函数的图象与性质、一次函数的图象与性质,认真识图,会用函数的思想、数形结合思想解答
问题是关键.
11、C
【解析】
直接利用平方差公式分解因式即可.
【详解】
(x+3)2-(x-1)2=[(x+3)+(x-1)][(x+3)-(x-1)]=4(2x+2)=8(x+1).
故选C.
【点睛】
此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.
12、C
【解析】
试题分析:由题中所给出的左视图知物体共两层,每一层都是两个小正方体;从俯视图可以可以看出最底层的个数
所以图中的小正方体最少2+4=1.故选C.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
]
2n(n-l)
【解析】
解:设OA1=A1A2=A2A3=・・・=An-2An_l=An-lAn=a,
二•当x=a时,y=一,;・Pi的坐标为(a,—),
aa
当x=2a时,y=—,,P2的坐标为(2a,—),
2a2a
/.RtAP1B1P2的面积为一•〃•(------),
2ala
RtAP2B2P3的面积为一-------)9
22a3a
RtAP3B3P4的面积为一•〃・(-------)9
23a4〃
1]
/.RtAPn-lBn-lPn的面积为不。
2(n-l)ana2n—ln2n(n-1)
]
故答案为:
2n(n-l)
14、m<l
【解析】
根据一元二次方程有实数根,得出AK),建立关于m的不等式,求出m的取值范围即可.
【详解】
解:由题意知,△=4-4(m-1)20,
m<l,
故答案为:m<l.
【点睛】
此题考查了根的判别式,掌握一元二次方程根的情况与判别式小的关系:△>0,方程有两个不相等的实数根;△=0,
方程有两个相等的实数根;△<0,方程没有实数根是本题的关键.
15、AD
【解析】
分析:
根据“向量运算”的三角形法则进行计算即可.
详解:
如下图所示,由向量运算的三角形法则可得:
AB+BC+CD
=AC+CD
uuur
=AD-
,,uuer
故答案为AD-
点睛:理解向量运算的三角形法则是正确解答本题的关键.
16、1
【解析】
根据中位数的定义,结合图表信息解答即可.
【详解】
将这八位女生的体重重新排列为:35、36、38、38、40、42、42、45,
则这八位女生的体重的中位数为型N=lkg,
故答案为L
【点睛】
本题考查了中位数,确定中位数的时候一定要先排好顺序,然后再根据个数是奇数或偶数来确定中位数,如果数据有
奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数,中位数有时不一定是这组数据的数.
17、1
【解析】
根据函数值相等两点关于对称轴对称,可得答案.
【详解】
由点A(-1,4)、B(m,4)在抛物线y=a(x-1)2+h上,得:(-1,4)与(机,4)关于对称轴x=l对称,m-1-1
-(-1)>解得:m=l.
故答案为:L
【点睛】
本题考查了二次函数图象上点的坐标特征,利用函数值相等两点关于对称轴对称得出"L1=1-(-1)是解题的关键.
18、a1.
【解析】
试题分析:根据同底数嘉的除法底数不变指数相减,可得答案.
原式=ami=al
故答案为a1.
考点:同底数幕的除法.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)A种钢笔每只15元B种钢笔每只20元;
(2)方案有两种,一方案为:购进A种钢笔43支,购进B种钢笔为47支方案二:购进A种钢笔44支,购进B种
钢笔46支;
(3)定价为33元或34元,最大利润是728元.
【解析】
(1)设A种钢笔每只x元,B种钢笔每支y元,
2x+3y=90
由题意得<
3x+5y=145
%=15
解得:
」=20
答:A种钢笔每只15元,B种钢笔每支20元;
(2)设购进A种钢笔z支,
r152+20(90-z)<1588
由题意得:
z<90—z
.\42.4<z<45,
;z是整数
z=43,44,
.\90-z=47,或46;
,共有两种方案:方案一:购进A种钢笔43支,购进B种钢笔47支,
方案二:购进A种钢笔44只,购进B种钢笔46只;
7
(3)W=(30-20+a)(68-4a)=-4a2+28a+680=-4(a--)2+729,
;.W有最大值,...a为正整数,
•*.当a=3,或a=4时,W最大,
7
最大==-4x(3-一产+729=728,30+a=33,或34;
2
答:B种铅笔销售单价定为33元或34元时,每月获利最大,最大利润是728元.
20、⑴见解析;⑵封1.
2
【解析】
(1)连接OD,根据切线的判定方法即可求出答案;
(2)由于OD〃AC,点O是AB的中点,从而可知OD为△ABC的中位线,在RtACDE中,ZC=60°,CE=-CD
2
=1,所以AE=AC-CE=4-1=3,在RtAAEF中,所以EF=AE・sinA=3xsin6(F=为3.
【详解】
(1)连接OD,
VAABC是等边三角形,
.,.ZC=ZA=ZB=60°,
VOD=OB,
.,.△ODB是等边三角形,
:.ZODB=60°
.\ZODB=ZC,
.\OD#AC,
.\DE±AC
/.OD1DE,
;.DE是(DO的切线
(2)VOD#AC,点O是AB的中点,
AOD为4ABC的中位线,
/.BD=CD=2
在RtACDE中,
NC=60°,
.\ZCDE=30°,
1
/.CE=-CD=1
2
AAE=AC-CE=4-1=3
在RtAAEF中,
ZA=60°,
EF=AE*sinA=3xsin60°=§虫
2
【点睛】
本题考查圆的综合问题,涉及切线的判定,锐角三角函数,含30度角的直角三角形的性质,等边三角形的性质,本题
属于中等题型.
a——1a=2
21>\或〈
[b=-2[b=l
【解析】
X=1ax+by=\
把《1代入二元一次方程组入-邑="+3得到关于a.b的方程组,经过整理,得到关于b的一元二次方程,
y=—I
解之即可得到b的值,把b的值代入一个关于a,b的二元一次方程,求出a的值,即可得到答案.
【详解】
X=1ax+by=lz
把《1代入二元一次方程组。2%一/丁="+3信
[y=—l
a-b=1①
a2+b2=〃b+3②'
由①得:a=l+b,
把a=l+b代入②,整理得:
b2+b-2=0,
解得:b=-2或b=L
把b=-2代入①得:a+2=l,
解得:a=-1,
把b=l代入①得:
a-l=l,
解得:a=2,
a——1a=2
即《-2或
b=l
【点睛】
本题考查了二元一次方程组的解,正确掌握代入法是解题的关键.
22、(1)25兀;(2)CDi=6,。。2=70
【解析】
分析:(1)利用圆周角定理的推论得到NC是直角,利用勾股定理求出直径A3,再利用圆的面积公式即可得到答案;
(2)分点。在上半圆中点与点O在下半圆中点这两种情况进行计算即可.
详解:(1)•••43是。。的直径,
:.ZACB^9Q0,
•.•A5是。。的直径,
,AC=8,5c=1,
/.AB=10,
'.QO的面积=71x52=2571.
(2)有两种情况:
①如图所示,当点。位于上半圆中点5时,可知△A5O1是等腰直角三角形,且ODiLAB,
作CELA5垂足为E,CFLOZh垂足为歹,可得矩形CEO尸,
ACBC8x624
•:CE=
ABi(ry
24
:.OF=CE=—,
5
241
:.DF=5——=-
}155
•/BE=^BC2-CE2=^62-(y)2=y,
7
5
7
:.CF=OE=~,
5
:.CDX=yjCF~+DxF~==也?
②如图所示,当点。位于下半圆中点。2时,
;.CDI=6,皿=70
点睛:本题考查了圆周角定理的推论、勾股定理、矩形的性质等知识.利用分类讨论思想并合理构造辅助线是解题的关
键.
23、(1)购买一套茶艺耗材需要450元,购买一套陶艺耗材需要600元;(2)加的值为95.
【解析】
(1)设购买一套茶艺耗材需要x元,则购买一套陶艺耗材需要(x+150)元,根据购买茶艺耗材的数量是陶艺耗材数
量的2倍列方程求解即可;
(2)设今年原计划购买茶艺耗材和陶艺素材的数量均为。,根据两种耗材的总价相等列方程求解即可.
【详解】
(1)设购买一套茶艺耗材需要了元,则购买一套陶艺耗材需要(x+150)元,根据题意,得"詈=2*看备.
解方程,得%=450.
经检验,%=450是原方程的解,且符合题意
x+150=600.
答:购买一套茶艺耗材需要450元,购买一套陶艺耗材需要600元.
(2)设今年原计划购买茶艺耗材和陶艺素材的数量均为。,由题意得:
(450-2m)-a(l+2.5m%)=(600-150)-a(l+机%)
整理,得/J?—957%=0
解方程,得叫=95,?=0(舍去).
m的值为95.
【点睛】
本题考查了分式方程的应用及一元二次方程的应用,找出等量关系,列出方程是解答本题的关键,列方程解决实际问
题注意要检验与实际情况是否相符.
24、(1)35元/盒;(2)20%.
【解析】
试题分析:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x-11)元/盒,根据2014年花
3500元与2016年花2400元购进的礼盒数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)设年增长率为m,根据数量=总价+单价求出2014年的购进数量,再根据2014年的销售利润x(1+增长率)2=2016
年的销售利润,即可得出关于m的一元二次方程,解之即可得出结论.
试题解析:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x-11)元/盒,根据题意得:
-----=------,解得:x=35,经检验,x=35是原方程的解.
xx-11
答:2014年这种礼盒的进价是35元/盒.
(2)设年增长率为m,2014年的销售数量为3500+35=100(盒).
根据题意得:(60-35)xlOO(1+a)2=(60-35+11)xlOO,解得:a=0.2=20%或a=-2.2(不合题意,舍去).
答:年增长率为20%.
考点:一元二次方程的应用;分式方程的应用;增长率问题.
'20z(0<r<2)2
25、(1)1件;(2)y甲=30t(0<t<5);yz=\'';(3)-小时;
[60?-80(2<?<5)3
【解析】
(1)根据图①可得出总工作量为370件,根据图②可得出乙完成了220件,从而可得出甲5小时完成的工作量;(2)
设y甲的函数解析式为y=kx+b,将点(0,0),(5,1)代入即可得出y甲与t的函数关系式;设y乙的函数解析式为y=mx
(0<t<2),y=cx+d(2<t<5),将点的坐标代入即可得出函数解析式;(3)联立y甲与改进后y乙的函数解析式即可得出
答案.
【详解】
(1)由图①得,总工作量为370件,由图②可得出乙完成了220件,
故甲5时完成的工作量是1.
(2)设y单的函数解析式为y=kt(k/)),把点(5,1)代入可得:k=30
故y甲=30t(0StW5);
乙改进前,甲乙每小时完成50件,所以乙每小时完成20件,
当0<t<2时,可得y乙=20t;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 计算机二级Delphi应用实例分析试题及答案
- 经济法复习中的特别注意事项试题及答案
- 网络管理员考试能力提升指南试题及答案
- 2025年计算机二级考试重要知识与试题及答案
- 汉语课堂交流技巧试题及答案
- Delphi事件处理考题解析及答案
- 2025年新型考法计算机试题及答案
- 实战演练2025年计算机二级MySQL试题及答案
- 实践激励2025年Web考试试题及答案
- 财务管理考点剖析试题及答案
- 趣味英语课件完整版
- 大学武术智慧树知到答案章节测试2023年浙江大学
- 前列腺增生症患者围手术期的护理
- 五防系统调试报告
- 日语综合教程第六册 单词表
- 市委政研室主任关于如何写稿子的讲话
- 在建项目雨季施工(防汛)安全隐患排查表
- 《广东省普通高中学生档案》模板
- YY/T 1064-2022牙科学牙科种植手术用钻头通用要求
- GB/T 40848-2021饲料原料压片玉米
- GB/T 12237-2021石油、石化及相关工业用的钢制球阀
评论
0/150
提交评论