版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省广州市越秀区执信中学2025年高三下期第二次模拟考试数学试题文试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某几何体的三视图如图所示,则该几何体的最长棱的长为()A. B. C. D.2.在平面直角坐标系中,已知角的顶点与原点重合,始边与轴的非负半轴重合,终边落在直线上,则()A. B. C. D.3.某人用随机模拟的方法估计无理数的值,做法如下:首先在平面直角坐标系中,过点作轴的垂线与曲线相交于点,过作轴的垂线与轴相交于点(如图),然后向矩形内投入粒豆子,并统计出这些豆子在曲线上方的有粒,则无理数的估计值是()A. B. C. D.4.如图,平面四边形中,,,,为等边三角形,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为()A. B. C. D.5.设是等差数列的前n项和,且,则()A. B. C.1 D.26.复数(为虚数单位),则等于()A.3 B.C.2 D.7.正项等差数列的前和为,已知,则=()A.35 B.36 C.45 D.548.已知函数在区间上恰有四个不同的零点,则实数的取值范围是()A. B. C. D.9.已知函数的部分图象如图所示,将此图象分别作以下变换,那么变换后的图象可以与原图象重合的变换方式有()①绕着轴上一点旋转;②沿轴正方向平移;③以轴为轴作轴对称;④以轴的某一条垂线为轴作轴对称.A.①③ B.③④ C.②③ D.②④10.如图,内接于圆,是圆的直径,,则三棱锥体积的最大值为()A. B. C. D.11.已知,,为圆上的动点,,过点作与垂直的直线交直线于点,若点的横坐标为,则的取值范围是()A. B. C. D.12.设,是两条不同的直线,,是两个不同的平面,给出下列四个命题:①若,,则;②若,,则;③若,,则;④若,,则;其中真命题的个数为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,养殖公司欲在某湖边依托互相垂直的湖岸线、围成一个三角形养殖区.为了便于管理,在线段之间有一观察站点,到直线,的距离分别为8百米、1百米,则观察点到点、距离之和的最小值为______________百米.14.已知函数,若关于x的方程有且只有两个不相等的实数根,则实数a的取值范围是_______________.15.的三个内角A,B,C所对应的边分别为a,b,c,已知,则________.16.已知向量,,,若,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知关于的不等式解集为().(1)求正数的值;(2)设,且,求证:.18.(12分)某生物硏究小组准备探究某地区蜻蜓的翼长分布规律,据统计该地区蜻蜓有两种,且这两种的个体数量大致相等,记种蜻蜓和种蜻蜓的翼长(单位:)分别为随机变量,其中服从正态分布,服从正态分布.(Ⅰ)从该地区的蜻蜓中随机捕捉一只,求这只蜻蜓的翼长在区间的概率;(Ⅱ)记该地区蜻蜓的翼长为随机变量,若用正态分布来近似描述的分布,请你根据(Ⅰ)中的结果,求参数和的值(精确到0.1);(Ⅲ)在(Ⅱ)的条件下,从该地区的蜻蜓中随机捕捉3只,记这3只中翼长在区间的个数为,求的分布列及数学期望(分布列写出计算表达式即可).注:若,则,,.19.(12分)在直角坐标系中,圆的参数方程为(为参数),以为极点,轴的非负半轴为极轴建立极坐标系.(1)求圆的极坐标方程;(2)直线的极坐标方程是,射线与圆的交点为、,与直线的交点为,求线段的长.20.(12分)已知在中,内角所对的边分别为,若,,且.(1)求的值;(2)求的面积.21.(12分)已知,,函数的最小值为.(1)求证:;(2)若恒成立,求实数的最大值.22.(10分)已知函数,为实数,且.(Ⅰ)当时,求的单调区间和极值;(Ⅱ)求函数在区间,上的值域(其中为自然对数的底数).
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】
先根据三视图还原几何体是一个四棱锥,根据三视图的数据,计算各棱的长度.【详解】根据三视图可知,几何体是一个四棱锥,如图所示:由三视图知:,所以,所以,所以该几何体的最长棱的长为故选:D本题主要考查三视图的应用,还考查了空间想象和运算求解的能力,属于中档题.2.C【解析】
利用诱导公式以及二倍角公式,将化简为关于的形式,结合终边所在的直线可知的值,从而可求的值.【详解】因为,且,所以.故选:C.本题考查三角函数中的诱导公式以及三角恒等变换中的二倍角公式,属于给角求值类型的问题,难度一般.求解值的两种方法:(1)分别求解出的值,再求出结果;(2)将变形为,利用的值求出结果.3.D【解析】
利用定积分计算出矩形中位于曲线上方区域的面积,进而利用几何概型的概率公式得出关于的等式,解出的表达式即可.【详解】在函数的解析式中,令,可得,则点,直线的方程为,矩形中位于曲线上方区域的面积为,矩形的面积为,由几何概型的概率公式得,所以,.故选:D.本题考查利用随机模拟的思想估算的值,考查了几何概型概率公式的应用,同时也考查了利用定积分计算平面区域的面积,考查计算能力,属于中等题.4.A【解析】
将三棱锥补形为如图所示的三棱柱,则它们的外接球相同,由此易知外接球球心应在棱柱上下底面三角形的外心连线上,在中,计算半径即可.【详解】由,,可知平面.将三棱锥补形为如图所示的三棱柱,则它们的外接球相同.由此易知外接球球心应在棱柱上下底面三角形的外心连线上,记的外心为,由为等边三角形,可得.又,故在中,,此即为外接球半径,从而外接球表面积为.故选:A本题考查了三棱锥外接球的表面积,考查了学生空间想象,逻辑推理,综合分析,数学运算的能力,属于较难题.5.C【解析】
利用等差数列的性质化简已知条件,求得的值.【详解】由于等差数列满足,所以,,.故选:C本小题主要考查等差数列的性质,属于基础题.6.D【解析】
利用复数代数形式的乘除运算化简,从而求得,然后直接利用复数模的公式求解.【详解】,所以,,故选:D.该题考查的是有关复数的问题,涉及到的知识点有复数的乘除运算,复数的共轭复数,复数的模,属于基础题目.7.C【解析】
由等差数列通项公式得,求出,再利用等差数列前项和公式能求出.【详解】正项等差数列的前项和,,,解得或(舍),,故选C.本题主要考查等差数列的性质与求和公式,属于中档题.解等差数列问题要注意应用等差数列的性质()与前项和的关系.8.A【解析】
函数的零点就是方程的解,设,方程可化为,即或,求出的导数,利用导数得出函数的单调性和最值,由此可根据方程解的个数得出的范围.【详解】由题意得有四个大于的不等实根,记,则上述方程转化为,即,所以或.因为,当时,,单调递减;当时,,单调递增;所以在处取得最小值,最小值为.因为,所以有两个符合条件的实数解,故在区间上恰有四个不相等的零点,需且.故选:A.本题考查复合函数的零点.考查转化与化归思想,函数零点转化为方程的解,方程的解再转化为研究函数的性质,本题考查了学生分析问题解决问题的能力.9.D【解析】
计算得到,,故函数是周期函数,轴对称图形,故②④正确,根据图像知①③错误,得到答案.【详解】,,,当沿轴正方向平移个单位时,重合,故②正确;,,故,函数关于对称,故④正确;根据图像知:①③不正确;故选:.本题考查了根据函数图像判断函数性质,意在考查学生对于三角函数知识和图像的综合应用.10.B【解析】
根据已知证明平面,只要设,则,从而可得体积,利用基本不等式可得最大值.【详解】因为,所以四边形为平行四边形.又因为平面,平面,所以平面,所以平面.在直角三角形中,,设,则,所以,所以.又因为,当且仅当,即时等号成立,所以.故选:B.本题考查求棱锥体积的最大值.解题方法是:首先证明线面垂直同,得棱锥的高,然后设出底面三角形一边长为,用建立体积与边长的函数关系,由基本不等式得最值,或由函数的性质得最值.11.A【解析】
由题意得,即可得点M的轨迹为以A,B为左、右焦点,的双曲线,根据双曲线的性质即可得解.【详解】如图,连接OP,AM,由题意得,点M的轨迹为以A,B为左、右焦点,的双曲线,.故选:A.本题考查了双曲线定义的应用,考查了转化化归思想,属于中档题.12.C【解析】
利用线线、线面、面面相应的判定与性质来解决.【详解】如果两条平行线中一条垂直于这个平面,那么另一条也垂直于这个平面知①正确;当直线平行于平面与平面的交线时也有,,故②错误;若,则垂直平面内以及与平面平行的所有直线,故③正确;若,则存在直线且,因为,所以,从而,故④正确.故选:C.本题考查空间中线线、线面、面面的位置关系,里面涉及到了相应的判定定理以及性质定理,是一道基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
建系,将直线用方程表示出来,再用参数表示出线段的长度,最后利用导数来求函数最小值.【详解】以为原点,所在直线分别作为轴,建立平面直角坐标系,则.设直线,即,则,所以,所以,,则,则,当时,,则单调递减,当时,,则单调递增,所以当时,最短,此时.故答案为:本题考查导数的实际应用,属于中档题.14.【解析】
画出函数的图象,再画的图象,求出一个交点时的的值,然后平行移动可得有两个交点时的的范围.【详解】函数的图象如图所示:因为方程有且只有两个不相等的实数根,所以图象与直线有且只有两个交点即可,当过点时两个函数有一个交点,即时,与函数有一个交点,由图象可知,直线向下平移后有两个交点,可得,故答案为:.本题主要考查了方程的跟与函数的图象交点的转化,数形结合的思想,属于中档题.15.【解析】
利用正弦定理边化角可得,从而可得,进而求解.【详解】由,由正弦定理可得,即,整理可得,又因为,所以,因为,所以,故答案为:本题主要考查了正弦定理解三角形、两角和的正弦公式,属于基础题.16.-1【解析】
由向量垂直得向量的数量积为0,根据数量积的坐标运算可得结论.【详解】由已知,∵,∴,.故答案为:-1.本题考查向量垂直的坐标运算.掌握向量垂直与数量积的关系是解题关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)1;(2)证明见解析.【解析】
(1)将不等式化为,求解得出,根据解集确定正数的值;(2)利用基本不等式以及不等式的性质,得出,,,三式相加,即可得证.【详解】(1)解:不等式,即不等式∴,而,于是依题意得(2)证明:由(1)知,原不等式可化为∵,∴,同理,三式相加得,当且仅当时取等号综上.本题主要考查了求绝对值不等式中参数的范围以及基本不等式的应用,属于中档题.18.(Ⅰ);(Ⅱ),;(Ⅲ)详见解析.【解析】
(Ⅰ)由题知这只蜻蜓是种还是种的可能性是相等的,所以,代入数值运算即可;(Ⅱ)可判断均值应为,再结合(1)和题干备注信息可得,进而求解;(Ⅲ)求得,该分布符合二项分布,故,列出分布列,计算出对应概率,结合即可求解;【详解】(Ⅰ)记这只蜻蜓的翼长为.因为种蜻蜓和种蜻蜓的个体数量大致相等,所以这只蜻蜓是种还是种的可能性是相等的.所以.(Ⅱ)由于两种蜻蜓的个体数量相等,的方差也相等,根据正态曲线的对称性,可知由(Ⅰ)可知,得.(Ⅲ)设蜻蜓的翼长为,则.由题有,所以.因此的分布列为.本题考查正态分布基本量的求解,二项分布求解离散型随机变量分布列和期望,属于中档题19.(1)(2)【解析】
(1)首先将参数方程转化为普通方程再根据公式化为极坐标方程即可;(2)设,,由,即可求出,则计算可得;【详解】解:(1)圆的参数方程(为参数)可化为,∴,即圆的极坐标方程为.(2)设,由,解得.设,由,解得.∵,∴.本题考查了利用极坐标方程求曲线的交点弦长,考查了推理能力与计算能力,属于中档题.20.(1);(2)【解析】
(1)将代入等式,结合正弦定理将边化为角,再将及代入,即可求得的值;(2)根据(1)中的值可求得和,进而可得,由三角形面积公式即可求解.【详解】(1)由,得,由正弦定理将边化为角可得,∵,∴,∴,化简可得,∴解得.(2)∵在中,,∴,∴,∴,∴.本题考查了正弦定理在边角转化中的应用,正弦差角公式的应用,三角形面积公式求法,属于基础题.21.(1)见解析;(2)最大值为.【解析】
(1)将函数表示为分段函数,利用函数的单调性求出该函数的最小值,进而可证得结论成立;(2)由可得出,并将代数式与相乘,展开后利用基本不等式可求得的最小值,进而可得出实数的最大值.【详解】(1).当时,函数单调递减,则;当时,函数单调递增,则;当时,函数单调递增,则.综上所述,,所以;(2)因为恒成立,且,,所以恒成立,即.因为,当且仅当时等号成立,所以,实数的最大值为.本题考查含绝对值函数最值的求解,同时也考查了利用基本不等式恒成立求参数,考查推理能力与计算能力,属于中等题.22.(Ⅰ)极大值0,没有极小值;函数的递增区间,递减区间,(Ⅱ)见解析【解析】
(Ⅰ)由,令,得增区间为,令,得减区间为,所以有极大值,无极小值;(Ⅱ)由,分,和三种
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025江苏省建筑安全员B证考试题库附答案
- 贵州财经职业学院《生殖医学》2023-2024学年第一学期期末试卷
- 贵阳职业技术学院《编排与版式》2023-2024学年第一学期期末试卷
- 2025年贵州建筑安全员《A证》考试题库及答案
- 2025年陕西建筑安全员《B证》考试题库
- 2025年天津建筑安全员《B证》考试题库
- 广州中医药大学《管理沟通双语》2023-2024学年第一学期期末试卷
- 2025江苏省安全员《B证》考试题库
- 广州医科大学《机械制造技术课程设计》2023-2024学年第一学期期末试卷
- 2025贵州建筑安全员-B证考试题库附答案
- 外研版英语六年级上册期末测试题及答案(共3套)
- 江苏科技大学高等数学期末考试试卷(含答案)
- 英语介绍家乡省份江西
- 垃圾中转站运营管理投标方案
- 广东省广州市2023年七年级上学期语文期末试卷(附答案)
- 建设工程见证取样管理规范
- 中国成人血脂异常防治指南解读
- 医学专家谈灵芝孢子粉课件
- 弹性力学19年 吴家龙版学习通超星课后章节答案期末考试题库2023年
- 有没有租学位的协议书
- 车载智能计算芯片白皮书
评论
0/150
提交评论