版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省淮南市田区重点达标名校2024-2025学年初三5月冲刺数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如果(,均为非零向量),那么下列结论错误的是()A.// B.-2=0 C.= D.2.如图,圆O是等边三角形内切圆,则∠BOC的度数是()A.60° B.100° C.110° D.120°3.在平面直角坐标系内,点P(a,a+3)的位置一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点,增加下列条件,不一定能得出BE∥DF的是()A.AE=CF B.BE=DF C.∠EBF=∠FDE D.∠BED=∠BFD5.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=1.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为()A.(﹣) B.(﹣) C.(﹣) D.(﹣)6.若关于x的一元二次方程(m-1)x2+x+m2-5m+3=0有一个根为1,则m的值为A.1 B.3 C.0 D.1或37.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012 B.8×1013 C.8×1014 D.0.8×10138.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A. B. C. D.9.计算(-ab2)3÷(-ab)2的结果是()A.ab4B.-ab4C.ab3D.-ab310.如图,△ABC内接于半径为5的⊙O,圆心O到弦BC的距离等于3,则∠A的正切值等于()A.B.C.D.二、填空题(共7小题,每小题3分,满分21分)11.阅读材料:设=(x1,y1),=(x2,y2),如果∥,则x1•y2=x2•y1.根据该材料填空:已知=(2,3),=(4,m),且∥,则m=_____.12.一个不透明的口袋中有5个红球,2个白球和1个黑球,它们除颜色外完全相同,从中任意摸出一个球,则摸出的是红球的概率是_____.13.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有_____个.14.如图,已知在△ABC中,∠A=40°,剪去∠A后成四边形,∠1+∠2=______°.15.分解因式:x3y﹣2x2y+xy=______.16.已知点P在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上.(1)k的值是;(2)如图,该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数y=图象交于C,D两点(点C在第二象限内),过点C作CE⊥x轴于点E,记S1为四边形CEOB的面积,S2为△OAB的面积,若=,则b的值是.17.已知点A(2,4)与点B(b﹣1,2a)关于原点对称,则ab=_____.三、解答题(共7小题,满分69分)18.(10分)已知关于的一元二次方程(为实数且).求证:此方程总有两个实数根;如果此方程的两个实数根都是整数,求正整数的值.19.(5分)(1)|﹣2|+•tan30°+(2018﹣π)0-()-1(2)先化简,再求值:(﹣1)÷,其中x的值从不等式组的整数解中选取.20.(8分)“分组合作学习”已成为推动课堂教学改革,打造自主高效课堂的重要措施.某中学从全校学生中随机抽取部分学生对“分组合作学习”实施后的学习兴趣情况进行调查分析,统计图如下:请结合图中信息解答下列问题:求出随机抽取调查的学生人数;补全分组后学生学习兴趣的条形统计图;分组后学生学习兴趣为“中”的所占的百分比和对应扇形的圆心角.21.(10分)对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如:下图中的函数有0,1两个不变值,其不变长度q等于1.(1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;(2)函数y=2x2-bx.①若其不变长度为零,求b的值;②若1≤b≤3,求其不变长度q的取值范围;(3)记函数y=x2-2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为.22.(10分)若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从1,2,3,4这四个数字中任取3个数,组成无重复数字的三位数.(1)请画出树状图并写出所有可能得到的三位数;(2)甲、乙二人玩一个游戏,游戏规则是:若组成的三位数是“伞数”,则甲胜;否则乙胜.你认为这个游戏公平吗?试说明理由.23.(12分)一个不透明的口袋中装有2个红球、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.24.(14分)如图,直线y=12x与双曲线y=kx(k>0,x>0)交于点A,将直线y=12(1)设点B的横坐标分别为b,试用只含有字母b的代数式表示k;(2)若OA=3BC,求k的值.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】试题解析:向量最后的差应该还是向量.故错误.故选B.2、D【解析】
由三角形内切定义可知OB、OC是∠ABC、∠ACB的角平分线,所以可得到关系式∠OBC+∠OCB=(∠ABC+∠ACB),把对应数值代入即可求得∠BOC的值.【详解】解:∵△ABC是等边三角形,∴∠A=∠ABC=∠ACB=60°,∵圆O是等边三角形内切圆,∴OB、OC是∠ABC、∠ACB的角平分线,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣60°)=60°,∴∠BOC=180°﹣60=120°,故选D.此题主要考查了三角形的内切圆与内心以及切线的性质.关键是要知道关系式∠OBC+∠OCB=(∠ABC+∠ACB).3、D【解析】
判断出P的横纵坐标的符号,即可判断出点P所在的相应象限.【详解】当a为正数的时候,a+3一定为正数,所以点P可能在第一象限,一定不在第四象限,
当a为负数的时候,a+3可能为正数,也可能为负数,所以点P可能在第二象限,也可能在第三象限,
故选D.本题考查了点的坐标的知识点,解题的关键是由a的取值判断出相应的象限.4、B【解析】
由四边形ABCD是平行四边形,可得AD//BC,AD=BC,然后由AE=CF,∠EBF=∠FDE,∠BED=∠BFD均可判定四边形BFDE是平行四边形,则可证得BE//DF,利用排除法即可求得答案.【详解】四边形ABCD是平行四边形,
∴AD//BC,AD=BC,
A、∵AE=CF,∴DE=BF,∴四边形BFDE是平行四边形,∴BE//DF,故本选项能判定BE//DF;
B、∵BE=DF,
四边形BFDE是等腰梯形,
本选项不一定能判定BE//DF;
C、∵AD//BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠EBF=∠FDE,∴∠BED=∠BFD,四边形BFDE是平行四边形,∴BE//DF,故本选项能判定BE//DF;
D、∵AD//BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠BED=∠BFD,∴∠EBF=∠FDE,∴四边形BFDE是平行四边形,∴BE//DF,故本选项能判定BE//DF.
故选B.本题考查了平行四边形的判定与性质,注意根据题意证得四边形BFDE是平行四边形是关键.5、A【解析】
直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.【详解】过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,由题意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠1,则△A1OM∽△OC1N,∵OA=5,OC=1,∴OA1=5,A1M=1,∴OM=4,∴设NO=1x,则NC1=4x,OC1=1,则(1x)2+(4x)2=9,解得:x=±(负数舍去),则NO=,NC1=,故点C的对应点C1的坐标为:(-,).故选A.此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A1OM∽△OC1N是解题关键.6、B【解析】
直接把x=1代入已知方程即可得到关于m的方程,解方程即可求出m的值.【详解】∵x=1是方程(m﹣1)x2+x+m2﹣5m+3=0的一个根,∴(m﹣1)+1+m2﹣5m+3=0,∴m2﹣4m+3=0,∴m=1或m=3,但当m=1时方程的二次项系数为0,∴m=3.故答案选B.本题考查了一元二次方程的解,解题的关键是熟练的掌握一元二次方程的运算.7、B【解析】80万亿用科学记数法表示为8×1.故选B.点睛:本题考查了科学计数法,科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.8、D【解析】
从正面看,有2层,3列,左侧一列有1层,中间一列有2层,右侧一列有一层,据此解答即可.【详解】∵从正面看,有2层,3列,左侧一列有1层,中间一列有2层,右侧一列有一层,∴D是该几何体的主视图.故选D.本题考查三视图的知识,从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.9、B【解析】根据积的乘方的运算法则,先分别计算积的乘方,然后再根据单项式除法法则进行计算即可得,(-ab2)3÷(-ab)2=-a3b6÷a2b2=-ab4,故选B.10、C.【解析】试题分析:如答图,过点O作OD⊥BC,垂足为D,连接OB,OC,∵OB=5,OD=3,∴根据勾股定理得BD=4.∵∠A=∠BOC,∴∠A=∠BOD.∴tanA=tan∠BOD=.故选D.考点:1.垂径定理;2.圆周角定理;3.勾股定理;4.锐角三角函数定义.二、填空题(共7小题,每小题3分,满分21分)11、6【解析】根据题意得,2m=3×4,解得m=6,故答案为6.12、【解析】
根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:由于共有8个球,其中红球有5个,则从袋子中随机摸出一个球,摸出红球的概率是.故答案为.本题考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13、1【解析】试题解析:∵袋中装有6个黑球和n个白球,
∴袋中一共有球(6+n)个,
∵从中任摸一个球,恰好是黑球的概率为,
∴,
解得:n=1.
故答案为1.14、220.【解析】试题分析:△ABC中,∠A=40°,=;如图,剪去∠A后成四边形∠1+∠2+=;∠1+∠2=220°考点:内角和定理点评:本题考查三角形、四边形的内角和定理,掌握内角和定理是解本题的关键15、xy(x﹣1)1【解析】
原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=xy(x1-1x+1)=xy(x-1)1.故答案为:xy(x-1)1此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16、(1)-2;(2)【解析】
(1)设点P的坐标为(m,n),则点Q的坐标为(m−1,n+2),依题意得:,解得:k=−2.故答案为−2.(2)∵BO⊥x轴,CE⊥x轴,∴BO∥CE,∴△AOB∽△AEC.又∵,∴令一次函数y=−2x+b中x=0,则y=b,∴BO=b;令一次函数y=−2x+b中y=0,则0=−2x+b,解得:x=,即AO=.∵△AOB∽△AEC,且,∴,∴AE=,AO=,CE=BO=b,OE=AE−AO=.∵OE⋅CE=|−4|=4,即=4,解得:b=,或b=−(舍去).故答案为.17、1.【解析】由题意,得b−1=−1,1a=−4,解得b=−1,a=−1,∴ab=(−1)×(−1)=1,故答案为1.三、解答题(共7小题,满分69分)18、(1)证明见解析;(2)或.【解析】
(1)求出△的值,再判断出其符号即可;(2)先求出x的值,再由方程的两个实数根都是整数,且m是正整数求出m的值即可.【详解】(1)依题意,得,,.∵,∴方程总有两个实数根.(2)∵,∴,.∵方程的两个实数根都是整数,且是正整数,∴或.∴或.本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac的关系是解答此题的关键.19、(1)-1(1)-1【解析】
(1)先根据根据绝对值的意义、立方根的意义、特殊角的三角函数值、零指数幂、负整数指数幂的意义化简,然后按照实数的运算法则计算即可;(1)把括号里通分,把的分子、分母分解因式约分,然后把除法转化为乘法计算;然后求出不等式组的整数解,选一个使分式有意义的值代入计算即可.【详解】(1)原式=1+3×+1﹣5=1++1﹣5=﹣1;(1)原式====﹣,解不等式组得:-1≤x则不等式组的整数解为﹣1、0、1、1,∵x(x+1)≠0且x﹣1≠0,∴x≠0且x≠±1,∴x=1,则原式=﹣=﹣1.本题考查了实数的运算,分式的化简求值,不等式组的解法.熟练掌握各知识点是解答本题的关键,本题的易错点是容易忽视分式有意义的条件.20、(1)200人;(2)补图见解析;(3)分组后学生学习兴趣为“中”的所占的百分比为30%;对应扇形的圆心角为108°.【解析】试题分析:(1)用“极高”的人数所占的百分比,即可解答;
(2)求出“高”的人数,即可补全统计图;
(3)用“中”的人数调查的学生人数,即可得到所占的百分比,所占的百分比即可求出对应的扇形圆心角的度数.试题解析:(人).学生学习兴趣为“高”的人数为:(人).补全统计图如下:分组后学生学习兴趣为“中”的所占的百分比为:学生学习兴趣为“中”对应扇形的圆心角为:21、详见解析.【解析】试题分析:(1)根据定义分别求解即可求得答案;(1)①首先由函数y=1x1﹣bx=x,求得x(1x﹣b﹣1)=2,然后由其不变长度为零,求得答案;②由①,利用1≤b≤3,可求得其不变长度q的取值范围;(3)由记函数y=x1﹣1x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G1,可得函数G的图象关于x=m对称,然后根据定义分别求得函数的不变值,再分类讨论即可求得答案.试题解析:解:(1)∵函数y=x﹣1,令y=x,则x﹣1=x,无解;∴函数y=x﹣1没有不变值;∵y=x-1=,令y=x,则,解得:x=±1,∴函数的不变值为±1,q=1﹣(﹣1)=1.∵函数y=x1,令y=x,则x=x1,解得:x1=2,x1=1,∴函数y=x1的不变值为:2或1,q=1﹣2=1;(1)①函数y=1x1﹣bx,令y=x,则x=1x1﹣bx,整理得:x(1x﹣b﹣1)=2.∵q=2,∴x=2且1x﹣b﹣1=2,解得:b=﹣1;②由①知:x(1x﹣b﹣1)=2,∴x=2或1x﹣b﹣1=2,解得:x1=2,x1=.∵1≤b≤3,∴1≤x1≤1,∴1﹣2≤q≤1﹣2,∴1≤q≤1;(3)∵记函数y=x1﹣1x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G1,∴函数G的图象关于x=m对称,∴G:y=.∵当x1﹣1x=x时,x3=2,x4=3;当(1m﹣x)1﹣1(1m﹣x)=x时,△=1+8m,当△<2,即m<﹣时,q=x4﹣x3=3;当△≥2,即m≥﹣时,x5=,x6=.①当﹣≤m≤2时,x3=2,x4=3,∴x6<2,∴x4﹣x6>3(不符合题意,舍去);②∵当x5=x4时,m=1,当x6=x3时,m=3;当2<m<1时,x3=2(舍去),x4=3,此时2<x5<x4,x6<2,q=x4﹣x6>3(舍去);当1≤m≤3时,x3=2(舍去),x4=3,此时2<x5<x4,x6>2,q=x4﹣x6<3;当m>3时,x3=2(舍去),x4=3(舍去),此时x5>3,x6<2,q=x5﹣x6>3(舍去);综上所述:m的取值范围为1≤m≤3或m<﹣.点睛:本题属于二次函数的综合题,考查了二次函数、反比例函数、一次函数的性质以及函数的对称性.注意掌握分类讨论思想的应用是解答此题的关键.22、(1)见解析(2)不公平。理由见解析【解析】解:(1)画树状图得:所有得到的三位数有24个,分别为:123,124,132,134,142,143,213,214,231,234,241,243,312,314,321,324,341,342,412
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年特色餐厅特色食材采购与加工合作协议3篇
- 生物学入门讲座模板
- 媒体行业销售工作总结
- 人资管理季度报告模板
- 武汉体育学院体育科技学院《器官-系统模块三》2023-2024学年第一学期期末试卷
- 天津中德应用技术大学《媒体大数据挖掘与实战》2023-2024学年第一学期期末试卷
- 专业化地磅秤采购安装项目协议文件版B版
- 牧业科技研究报告模板
- 娱乐场所前台工作思考
- 2024数据中心节能减排服务EMC项目合同
- 小学2022 年国家义务教育质量监测工作方案
- 化学品安全技术说明(胶水)
- 医院后勤保障管理组织架构图
- 南宁市中小学学籍管理系统数据采集表
- 中空吹塑成型课件
- 领先阅读X计划第四级Bug Hunt 教学设计
- 《诗词格律》word版
- 预算第二十三讲
- 高中体育与健康人教版全一册 6.2田径—短跑 课件(共11张PPT)
- 蔬菜供货服务保障方案
- WordA4信纸(A4横条直接打印版)
评论
0/150
提交评论