版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省抚顺市顺城区重点达标名校2021-2022学年中考数学考试模拟冲刺卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分)1.某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y(件)与销售单价x(元/件)之间的函数关系式为y=–4x+440,要获得最大利润,该商品的售价应定为A.60元B.70元C.80元D.90元2.数据”1,2,1,3,1”的众数是()A.1B.1.5C.1.6D.33.如图,3个形状大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角为60°,A、B、C都在格点上,点D在过A、B、C三点的圆弧上,若也在格点上,且∠AED=∠ACD,则∠AEC度数为()A.75° B.60° C.45° D.30°4.若代数式有意义,则实数x的取值范围是()A.x=0 B.x=3 C.x≠0 D.x≠35.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是()A.2(x1)+3x=13 B.2(x+1)+3x=13C.2x+3(x+1)=13 D.2x+3(x1)=136.如图是由6个完全相同的小长方体组成的立体图形,这个立体图形的左视图是()A. B.C. D.7.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为()A.36 B.12 C.6 D.38.函数y=中,x的取值范围是()A.x≠0 B.x>﹣2 C.x<﹣2 D.x≠﹣29.有以下图形:平行四边形、矩形、等腰三角形、线段、菱形,其中既是轴对称图形又是中心对称图形的有()A.5个B.4个C.3个D.2个10.方程2x2﹣x﹣3=0的两个根为()A.x1=,x2=﹣1 B.x1=﹣,x2=1 C.x1=,x2=﹣3 D.x1=﹣,x2=3二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,直线y1=kx+n(k≠0)与抛物线y2=ax2+bx+c(a≠0)分别交于A(﹣1,0),B(2,﹣3)两点,那么当y1>y2时,x的取值范围是_____.12.某校准备从甲、乙、丙、丁四个科创小组中选出一组,参加区青少年科技创新大赛,表格反映的是各组平时成绩的平均数(单位:分)及方差S2,如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是_____.甲乙丙丁7887s211.20.91.813.如图Rt△ABC中,∠C=90°,AC=6,BC=8,D是AB的中点,P是直线BC上一点,把△BDP沿PD所在直线翻折后,点B落在点Q处,如果QD⊥BC,那么点P和点B间的距离等于____.14.如图,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E,若AC=8,BC=6,DE=3,则AD的长为________.15.已知二次函数的图像与轴交点的横坐标是和,且,则________.16.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为_____.三、解答题(共8题,共72分)17.(8分)如图,在▱ABCD中,∠BAC=90°,对角线AC,BD相交于点P,以AB为直径的⊙O分别交BC,BD于点E,Q,连接EP并延长交AD于点F.(1)求证:EF是⊙O的切线;(2)求证:=4BP•QP.18.(8分)随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2017年“五•一”长假期间旅游情况统计图,根据以下信息解答下列问题:2017年“五•一”期间,该市周边景点共接待游客万人,扇形统计图中A景点所对应的圆心角的度数是,并补全条形统计图.根据近几年到该市旅游人数增长趋势,预计2018年“五•一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E景点旅游?甲、乙两个旅行团在A、B、D三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所用等可能的结果.19.(8分)如图,已知A,B两点在数轴上,点A表示的数为-10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)数轴上点B对应的数是______.经过几秒,点M、点N分别到原点O的距离相等?20.(8分)如图,四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E,求证:AE=CE.21.(8分)某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样A:菜包、B:面包、C:鸡蛋、D:油条.超市约定:随机发放,早餐一人一份,一份两样,一样一个.按约定,“某顾客在该天早餐得到两个鸡蛋”是事件(填“随机”、“必然”或“不可能”);请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率.22.(10分)小明和小亮为下周日计划了三项活动,分别是看电影(记为A)、去郊游(记为B)、去图书馆(记为C).他们各自在这三项活动中任选一个,每项活动被选中的可能性相同.(1)小明选择去郊游的概率为多少;(2)请用树状图或列表法求小明和小亮的选择结果相同的概率.23.(12分)如图①,在四边形ABCD中,AC⊥BD于点E,AB=AC=BD,点M为BC中点,N为线段AM上的点,且MB=MN.(1)求证:BN平分∠ABE;(2)若BD=1,连结DN,当四边形DNBC为平行四边形时,求线段BC的长;(3)如图②,若点F为AB的中点,连结FN、FM,求证:△MFN∽△BDC.24.如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于AC点E,交PC于点F,连接AF.判断AF与⊙O的位置关系并说明理由;若⊙O的半径为4,AF=3,求AC的长.
参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】设销售该商品每月所获总利润为w,则w=(x–50)(–4x+440)=–4x2+640x–22000=–4(x–80)2+3600,∴当x=80时,w取得最大值,最大值为3600,即售价为80元/件时,销售该商品所获利润最大,故选C.2、A【解析】
众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【详解】在这一组数据中1是出现次数最多的,故众数是1.故选:A.【点睛】本题为统计题,考查众数的意义.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.3、B【解析】
将圆补充完整,利用圆周角定理找出点E的位置,再根据菱形的性质即可得出△CME为等边三角形,进而即可得出∠AEC的值.【详解】将圆补充完整,找出点E的位置,如图所示.∵弧AD所对的圆周角为∠ACD、∠AEC,∴图中所标点E符合题意.∵四边形∠CMEN为菱形,且∠CME=60°,∴△CME为等边三角形,∴∠AEC=60°.故选B.【点睛】本题考查了菱形的性质、等边三角形的判定依据圆周角定理,根据圆周角定理结合图形找出点E的位置是解题的关键.4、D【解析】分析:根据分式有意义的条件进行求解即可.详解:由题意得,x﹣3≠0,解得,x≠3,故选D.点睛:此题考查了分式有意义的条件.注意:分式有意义的条件事分母不等于零,分式无意义的条件是分母等于零.5、A【解析】
要列方程,首先要根据题意找出题中存在的等量关系,由题意可得到:买A饮料的钱+买B饮料的钱=总印数1元,明确了等量关系再列方程就不那么难了.【详解】设B种饮料单价为x元/瓶,则A种饮料单价为(x-1)元/瓶,根据小峰买了2瓶A种饮料和3瓶B种饮料,一共花了1元,可得方程为:2(x-1)+3x=1.故选A.【点睛】列方程题的关键是找出题中存在的等量关系,此题的等量关系为买A中饮料的钱+买B中饮料的钱=一共花的钱1元.6、B【解析】
根据题意找到从左面看得到的平面图形即可.【详解】这个立体图形的左视图是,
故选:B.【点睛】本题考查了简单组合体的三视图,解题的关键是掌握左视图所看的位置.7、D【解析】设△OAC和△BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图象可得出点B的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义以及点B的坐标即可得出结论.
解:设△OAC和△BAD的直角边长分别为a、b,
则点B的坐标为(a+b,a﹣b).∵点B在反比例函数的第一象限图象上,
∴(a+b)×(a﹣b)=a2﹣b2=1.
∴S△OAC﹣S△BAD=a2﹣b2=(a2﹣b2)=×1=2.
故选D.点睛:本题主要考查了反比例函数系数k的几何意义、等腰三角形的性质以及面积公式,解题的关键是找出a2﹣b2的值.解决该题型题目时,要设出等腰直角三角形的直角边并表示出面积,再用其表示出反比例函数上点的坐标是关键.8、D【解析】试题分析:由分式有意义的条件得出x+1≠0,解得x≠﹣1.故选D.点睛:本题考查了函数中自变量的取值范围、分式有意义的条件;由分式有意义得出不等式是解决问题的关键.9、C【解析】矩形,线段、菱形是轴对称图形,也是中心对称图形,符合题意;等腰三角形是轴对称图形,不是中心对称图形,不符合题意;平行四边形不是轴对称图形,是中心对称图形,不符合题意.共3个既是轴对称图形又是中心对称图形.故选C.10、A【解析】
利用因式分解法解方程即可.【详解】解:(2x-3)(x+1)=0,2x-3=0或x+1=0,所以x1=,x2=-1.故选A.【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).二、填空题(本大题共6个小题,每小题3分,共18分)11、﹣1<x<2【解析】
根据图象得出取值范围即可.【详解】解:因为直线y1=kx+n(k≠0)与抛物线y2=ax2+bx+c(a≠0)分别交于A(﹣1,0),B(2,﹣3)两点,所以当y1>y2时,﹣1<x<2,故答案为﹣1<x<2【点睛】此题考查二次函数与不等式,关键是根据图象得出取值范围.12、丙【解析】
先比较平均数得到乙组和丙组成绩较好,然后比较方差得到丙组的状态稳定,于是可决定选丙组去参赛.【详解】因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,所以丙组的成绩比较稳定,所以丙组的成绩较好且状态稳定,应选的组是丙组.故答案为丙.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.13、2.1或2【解析】
在Rt△ACB中,根据勾股定理可求AB的长,根据折叠的性质可得QD=BD,QP=BP,根据三角形中位线定理可得DE=AC,BD=AB,BE=BC,再在Rt△QEP中,根据勾股定理可求QP,继而可求得答案.【详解】如图所示:在Rt△ACB中,∠C=90°,AC=6,BC=8,
AB==2,
由折叠的性质可得QD=BD,QP=BP,
又∵QD⊥BC,
∴DQ∥AC,
∵D是AB的中点,
∴DE=AC=3,BD=AB=1,BE=BC=4,
①当点P在DE右侧时,
∴QE=1-3=2,
在Rt△QEP中,QP2=(4-BP)2+QE2,
即QP2=(4-QP)2+22,
解得QP=2.1,
则BP=2.1.
②当点P在DE左侧时,同①知,BP=2
故答案为:2.1或2.【点睛】考查了折叠的性质、直角三角形的性质以及勾股定理.此题难度适中,注意数形结合思想的应用,注意折叠中的对应关系.14、1【解析】
如图,由勾股定理可以先求出AB的值,再证明△AED∽△ACB,根据相似三角形的性质就可以求出结论.【详解】在Rt△ABC中,由勾股定理.得AB==10,∵DE⊥AB,∴∠AED=∠C=90°.∵∠A=∠A,∴△AED∽△ACB,∴,∴,∴AD=1.故答案为1【点睛】本题考查了勾股定理的运用,相似三角形的判定及性质的运用,解答时求出△AED∽△ACB是解答本题的关键.15、-12【解析】
令y=0,得方程,和即为方程的两根,利用根与系数的关系求得和,利用完全平方式并结合即可求得k的值.【详解】解:∵二次函数的图像与轴交点的横坐标是和,令y=0,得方程,则和即为方程的两根,∴,,∵,两边平方得:,∴,即,解得:,故答案为:.【点睛】本题考查了一元二次方程与二次函数的关系,函数与x轴的交点的横坐标就是方程的根,解题的关键是利用根与系数的关系,整体代入求解.16、(,0)【解析】试题解析:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=,将B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入y=,∴x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,∴C也移动了个单位长度,此时点C的对应点C′的坐标为(,0)故答案为(,0).三、解答题(共8题,共72分)17、(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)连接OE,AE,由AB是⊙O的直径,得到∠AEB=∠AEC=90°,根据四边形ABCD是平行四边形,得到PA=PC推出∠OEP=∠OAC=90°,根据切线的判定定理即可得到结论;(2)由AB是⊙O的直径,得到∠AQB=90°根据相似三角形的性质得到=PB•PQ,根据全等三角形的性质得到PF=PE,求得PA=PE=EF,等量代换即可得到结论.试题解析:(1)连接OE,AE,∵AB是⊙O的直径,∴∠AEB=∠AEC=90°,∵四边形ABCD是平行四边形,∴PA=PC,∴PA=PC=PE,∴∠PAE=∠PEA,∵OA=OE,∴∠OAE=∠OEA,∴∠OEP=∠OAC=90°,∴EF是⊙O的切线;(2)∵AB是⊙O的直径,∴∠AQB=90°,∴△APQ∽△BPA,∴,∴=PB•PQ,在△AFP与△CEP中,∵∠PAF=∠PCE,∠APF=∠CPE,PA=PC,∴△AFP≌△CEP,∴PF=PE,∴PA=PE=EF,∴=4BP•QP.考点:切线的判定;平行四边形的性质;相似三角形的判定与性质.18、(1)50,108°,补图见解析;(2)9.6;(3).【解析】
(1)根据A景点的人数以及百分表进行计算即可得到该市周边景点共接待游客数;先求得A景点所对应的圆心角的度数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;根据B景点接待游客数补全条形统计图;(2)根据E景点接待游客数所占的百分比,即可估计2018年“五•一”节选择去E景点旅游的人数;(3)根据甲、乙两个旅行团在A、B、D三个景点中各选择一个景点,画出树状图,根据概率公式进行计算,即可得到同时选择去同一景点的概率.【详解】解:(1)该市周边景点共接待游客数为:15÷30%=50(万人),A景点所对应的圆心角的度数是:30%×360°=108°,B景点接待游客数为:50×24%=12(万人),补全条形统计图如下:(2)∵E景点接待游客数所占的百分比为:×100%=12%,∴2018年“五•一”节选择去E景点旅游的人数约为:80×12%=9.6(万人);(3)画树状图可得:∵共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,∴同时选择去同一个景点的概率=.【点睛】本题考查列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.19、(1)1;(2)经过2秒或2秒,点M、点N分别到原点O的距离相等【解析】试题分析:(1)根据OB=3OA,结合点B的位置即可得出点B对应的数;(2)设经过x秒,点M、点N分别到原点O的距离相等,找出点M、N对应的数,再分点M、点N在点O两侧和点M、点N重合两种情况考虑,根据M、N的关系列出关于x的一元一次方程,解之即可得出结论.试题解析:(1)∵OB=3OA=1,
∴B对应的数是1.
(2)设经过x秒,点M、点N分别到原点O的距离相等,
此时点M对应的数为3x-2,点N对应的数为2x.
①点M、点N在点O两侧,则
2-3x=2x,
解得x=2;
②点M、点N重合,则,
3x-2=2x,
解得x=2.
所以经过2秒或2秒,点M、点N分别到原点O的距离相等.20、证明见解析.【解析】
过点B作BF⊥CE于F,根据同角的余角相等求出∠BCF=∠D,再利用“角角边”证明△BCF和△CDE全等,根据全等三角形对应边相等可得BF=CE,再证明四边形AEFB是矩形,根据矩形的对边相等可得AE=BF,从而得证.【详解】证明:如图,过点B作BF⊥CE于F,∵CE⊥AD,∴∠D+∠DCE=90°,∵∠BCD=90°,∴∠BCF+∠DCE=90°∴∠BCF=∠D,在△BCF和△CDE中,∴△BCF≌△CDE(AAS),∴BF=CE,又∵∠A=90°,CE⊥AD,BF⊥CE,∴四边形AEFB是矩形,∴AE=BF,∴AE=CE.21、(1)不可能;(2).【解析】
(1)利用确定事件和随机事件的定义进行判断;(2)画树状图展示所有12种等可能的结果数,再找出其中某顾客该天早餐刚好得到菜包和油条的结果数,然后根据概率公式计算.【详解】(1)某顾客在该天早餐得到两个鸡蛋”是不可能事件;故答案为不可能;(2)画树状图:共有12种等可能的结果数,其中某顾客该天早餐刚好得到菜包和油条的结果数为2,所以某顾客该天早餐刚好得到菜包和油条的概率=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.22、(1)13;(2)1【解析】
(1)利用概率公式直接计算即可;(2)首先根据题意列表,然后求得所有等可能的结果与小明和小亮选择结果相同的情况,再利用概率公式即可求得答案【详解】(1)∵小明分别是从看电影(记为A)、去郊游(记为B)、去图书馆(记为C)的一个景点去游玩,∴小明选择去郊游的概率=;(2)列表得:ABCA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由列表可知两人选择的方案共有9种等可能的结果,其中选择同种方案有3种,所以小明和小亮的选择结果相同的概率==.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23、(1)证明见解析;(2);(3)证明见解析.【解析】分析:(1)由AB=AC知∠ABC=∠ACB,由等腰三角形三线合一知AM⊥BC,从而根据∠MAB+∠ABC=∠EBC+∠ACB知∠MAB=∠EBC,再由△MBN为等腰直角三角形知∠EBC+∠NBE=∠MAB+∠ABN=∠MNB=45°可得证;(2)设BM=CM=MN=a,知DN=BC=2a,证△ABN≌△DBN得AN=DN=2a,Rt△ABM中利用勾股定理可得a的值,从而得出答案;(3)F是AB的中点知MF=AF=BF及∠FMN=∠MAB=∠CBD,再由即可得证.详解:(1)∵AB=AC,∴∠ABC=∠ACB,∵M为BC的中点,∴AM⊥BC,在Rt△ABM中,∠MAB+∠ABC=90°,在Rt△CBE中,∠EBC+∠ACB=90°,∴∠MAB=∠EBC,又∵MB=MN,∴△MBN为等腰直角三角形,∴∠MNB=∠MBN=45°,∴∠EBC+∠NBE=45°,∠MAB+∠ABN=∠MNB=45°,∴∠NBE=∠ABN,即BN平分∠ABE;(2)设BM=CM=MN=a,∵四边形DNBC是平行四边形,∴DN=BC=2a,在△ABN和△DBN中,∵,∴△ABN≌△DBN(SAS),∴AN=DN=2a,在Rt△ABM中,由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年软件员工-竞业限制协议范本
- 2024年贸易煤炭购销合作合同范本
- 2024年三方股东合作协议书模板
- 2024年施工物业协议书范本
- 2024年公司整体收购协议书范文
- 2024年就业安置协议书
- 2024年拆厂房协议书范本
- 药品运输协议样本格式
- 家具跨省配送安装合同
- 水上砂石运输安全协议
- GB/T 15822.1-2024无损检测磁粉检测第1部分:总则
- 2024年反洗钱知识竞赛参考题库400题(含答案)
- SLT824-2024 水利工程建设项目文件收集与归档规范
- 七年级语文人教部编版(上册)《课外古诗词诵读》之《行军九日思长安故园》课件(26张)
- 2024广西专业技术人员继续教育公需科目参考答案(100分)
- 人民调解员业务培训讲稿
- 2024年日历表(空白)(一月一张-可编辑做工作日历)
- 2023-2024学年湖北省武汉市洪山区九年级(上)期中数学试卷(含解析)
- 国开2022年春季《小学数学教学研究》形考任务1-4题库及答案
- 机械手臂论文(研究热点范文10篇)
- 社会保险协议书(标准版)
评论
0/150
提交评论