版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
函数(第4课时)教学目标1.会用描点法画出函数的图象,能说出画函数的图象的步骤.2.会判断一个点是否在函数的图象上.3.经历用描点法画函数图象的过程,体会数形结合的数学思想.教学重点描点法画出函数的图象.教学难点会判断一个点是否在函数的图象上.教学过程知识回顾什么是函数的图象?【答案】一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.【设计意图】复习函数的图象概念,为本节课学习画函数的图象做准备.新知探究一、探究学习【问题】函数图象直观地反映了变量之间的对应关系和变化规律,怎样画一个函数的图象呢?在式子y=x+0.5中,对于x每一个确定的值,y有唯一的对应值,即y是x的函数,请画出这个函数的图象.【师生活动】教师带领学生画出图象,并总结描点法画函数图象的一般步骤.【答案】解:从式子y=x+0.5可以看出,x取任意实数时这个式子都有意义,所以x的取值范围是全体实数.从x的取值范围中选取一些数值,算出y的对应值,列表.x…-3-2-10123…y…-2.5-1.5-0.50.51.52.53.5…如图,根据表中数值描点(x,y),并用平滑曲线连接这些点.【思考】当自变量的值越来越大时,对应的函数值怎样变化?【师生活动】教师带领学生分析图象,从函数图象可以看出,直线从左向右上升,即当x由小变大时,y=x+0.5随之增大.【归纳】描点法画函数图象的一般步骤如下:第一步,列表——表中给出一些自变量的值及其对应的函数值;第二步,描点——在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点;第三步,连线——按照横坐标由小到大的顺序,把所描出的各点用平滑曲线连接起来.【设计意图】让学生经历列表、描点、连线等绘制函数图象的具体过程,加深对图象的意义的认识,归纳出描点法画函数图象的一般步骤.【练习】画出函数y=(x>0)的图象.【师生活动】学生独立完成,请一名学生代表展示画出的图象,教师讲评.【答案】解:①列表.x…0.511.523456…y…1264321.51.21…②描点.③连线(如图).【思考】当自变量的值越来越大时,对应的函数值怎样变化?【师生活动】教师带领学生分析图象,从函数图象可以看出,曲线从左向右下降,即当x由小变大时,y=(x>0)随之减小.【归纳】画函数的图象需要注意以下四点:(1)自变量的取值不宜过大或过小,尽可能取整数.(2)列表中的自变量的值、函数值分别对应着该点的横、纵坐标,防止出现横、纵坐标颠倒的错误.(3)连线时,要用平滑的线按照横坐标从小到大(或从大到小)进行.(4)图象有端点时,要注意端点值是否能取到,能取到时画实心圆点,不能取到时画空心圆圈.【设计意图】通过练习,巩固描点法画函数的图象的方法.【思考】我们知道,函数图象是以自变量的值和对应的函数值分别为横、纵坐标的点组成的图形,这样的点有无数个,那么怎样判断一个点是否在函数图象上?【师生活动】学生自由发言,教师补充总结.【归纳】函数的图象与函数的关系:(1)图象上每一个点的横坐标和纵坐标一定是这个函数的自变量x和函数y的一组对应值.(2)以自变量x的一个值和函数y的对应值为坐标的点必定在这个函数的图象上.【问题】(1)判断下列各点是否在函数y=x+0.5的图象上?①(-5,-4.5); ②(4,-3.5).(2)判断下列各点是否在函数y=(x>0)的图象上?①(0.5,12); ②(12,2).【师生活动】教师引导学生根据函数的图象与函数的关系,进行计算.解:(1)①∵当x=-5时,y=-5+0.5=-4.5,∴(-5,-4.5)在函数y=x+0.5的图象上.②∵当x=4时,y=4+0.5=4.5≠-3.5,∴(4,-3.5)不在函数y=x+0.5的图象上.(2)①∵当x=0.5时,y==12,∴(0.5,12)在函数y=的图象上.②∵当x=12时,y==0.5≠2,∴(12,2)不在函数y=的图象上.【归纳】用代入法验证点是否在函数图象上.欲判断点P(x,y)是否在函数的图象上,只需把x,y的值代入函数的解析式,如果左、右两边相等,那么这个点就在函数的图象上,否则,就不在函数的图象上.【设计意图】结合具体的问题,让学生学会判断一个点是否在函数的图象上.【思考】判断下列各点是否在函数y=x+0.5的图象上?①(-5,-4.5); ②(4,-3.5).是否可以通过观察图象,进行判断呢?【师生活动】学生小组讨论,完成做答.【答案】观察图象,发现:点(-5,-4.5)在函数y=x+0.5的图象上;点(4,-3.5)不在函数y=x+0.5的图象上.【设计意图】让学生体会数形结合的思想.二、典例精讲【例题】已知函数y=x2-1的图象如图所示.(1)判断点A(2.5,-4),B(-1.6,1.56)是否在函数y=x2-1的图象上;(2)从函数的图象中观察,当x<0时,y随x的增大而增大,还是y随x的增大而减小?当x>0时呢?【师生活动】学生独立思考,完成作答,教师讲评.【答案】解:(1)∵x=2.5时,y=2.52-1=5.25≠-4,∴点A(2.5,-4)不在函数y=x2-1的图象上.∵x=-1.6时,y=(-1.6)2-1=1.56,∴点B(-1.6,1.56)在函数y=x2-1的图象上.(2)观察函数的图象,发现:当x<0时,y随x的增大而减小;当x>0时,y随x的增大而增大
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 廉洁课件模板教学课件
- 2024甘肃事业单位联考招录管理单位遴选500模拟题附带答案详解
- 强信念课件教学课件
- 企业并购咨询合同
- 企业客户答谢宴用车协议
- 个人与企业之间信用贷款合同
- 代言权放弃协议书
- 二手房产买卖协议过户
- 企业考察包车合同范本
- 产品质量赔偿和解协议
- 院感病例(讲稿)
- 高考英语单词3500记忆短文40篇
- 北京市商业地产市场细分研究
- 2023-2024学年重庆市大足区八年级(上)期末数学试卷(含解析)
- 肺结节科普知识宣讲
- 网络直播营销
- 2024年节能减排培训资料
- 2024传染病预防ppt课件完整版
- 2024年华融实业投资管理有限公司招聘笔试参考题库含答案解析
- 2024年1月普通高等学校招生全国统一考试适应性测试(九省联考)历史试题(适用地区:贵州)含解析
- 《宽容待人 正确交往》班会课件
评论
0/150
提交评论