2025年安徽省芜湖市重点中学高三下学期4月调研数学试题含解析_第1页
2025年安徽省芜湖市重点中学高三下学期4月调研数学试题含解析_第2页
2025年安徽省芜湖市重点中学高三下学期4月调研数学试题含解析_第3页
2025年安徽省芜湖市重点中学高三下学期4月调研数学试题含解析_第4页
2025年安徽省芜湖市重点中学高三下学期4月调研数学试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025年安徽省芜湖市重点中学高三下学期4月调研数学试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数的定义域为,则函数的定义域为()A. B.C. D.2.已知双曲线,为坐标原点,、为其左、右焦点,点在的渐近线上,,且,则该双曲线的渐近线方程为()A. B. C. D.3.函数的最小正周期是,则其图象向左平移个单位长度后得到的函数的一条对称轴是()A. B. C. D.4.若,,则的值为()A. B. C. D.5.甲、乙、丙三人相约晚上在某地会面,已知这三人都不会违约且无两人同时到达,则甲第一个到、丙第三个到的概率是()A. B. C. D.6.已知不等式组表示的平面区域的面积为9,若点,则的最大值为()A.3 B.6 C.9 D.127.已知双曲线的右焦点为为坐标原点,以为直径的圆与双曲线的一条渐近线交于点及点,则双曲线的方程为()A. B. C. D.8.已知是定义在上的奇函数,且当时,.若,则的解集是()A. B.C. D.9.椭圆的焦点为,点在椭圆上,若,则的大小为()A. B. C. D.10.等比数列中,,则与的等比中项是()A.±4 B.4 C. D.11.已知等差数列中,若,则此数列中一定为0的是()A. B. C. D.12.的展开式中的常数项为()A.-60 B.240 C.-80 D.180二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则过原点且与曲线相切的直线方程为____________.14.3张奖券分别标有特等奖、一等奖和二等奖.甲、乙两人同时各抽取1张奖券,两人都未抽得特等奖的概率是__________.15.设实数满足约束条件,则的最大值为______.16.如图是一个几何体的三视图,若它的体积是,则_________,该几何体的表面积为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知是等差数列,满足,,数列满足,,且是等比数列.(1)求数列和的通项公式;(2)求数列的前项和.18.(12分)设数列满足,.(1)求数列的通项公式;(2)设,求数列的前项和.19.(12分)已知公差不为零的等差数列的前n项和为,,是与的等比中项.(1)求;(2)设数列满足,,求数列的通项公式.20.(12分)在数列和等比数列中,,,.(1)求数列及的通项公式;(2)若,求数列的前n项和.21.(12分)某广告商租用了一块如图所示的半圆形封闭区域用于产品展示,该封闭区域由以为圆心的半圆及直径围成.在此区域内原有一个以为直径、为圆心的半圆形展示区,该广告商欲在此基础上,将其改建成一个凸四边形的展示区,其中、分别在半圆与半圆的圆弧上,且与半圆相切于点.已知长为40米,设为.(上述图形均视作在同一平面内)(1)记四边形的周长为,求的表达式;(2)要使改建成的展示区的面积最大,求的值.22.(10分)已知数列中,a1=1,其前n项和为,且满足.(1)求数列的通项公式;(2)记,若数列为递增数列,求λ的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】试题分析:由题意,得,解得,故选A.考点:函数的定义域.2.D【解析】

根据,先确定出的长度,然后利用双曲线定义将转化为的关系式,化简后可得到的值,即可求渐近线方程.【详解】如图所示:因为,所以,又因为,所以,所以,所以,所以,所以,所以,所以渐近线方程为.故选:D.本题考查根据双曲线中的长度关系求解渐近线方程,难度一般.注意双曲线的焦点到渐近线的距离等于虚轴长度的一半.3.D【解析】

由三角函数的周期可得,由函数图像的变换可得,平移后得到函数解析式为,再求其对称轴方程即可.【详解】解:函数的最小正周期是,则函数,经过平移后得到函数解析式为,由,得,当时,.故选D.本题考查了正弦函数图像的性质及函数图像的平移变换,属基础题.4.A【解析】

取,得到,取,则,计算得到答案.【详解】取,得到;取,则.故.故选:.本题考查了二项式定理的应用,取和是解题的关键.5.D【解析】

先判断是一个古典概型,列举出甲、乙、丙三人相约到达的基本事件种数,再得到甲第一个到、丙第三个到的基本事件的种数,利用古典概型的概率公式求解.【详解】甲、乙、丙三人相约到达的基本事件有甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6种,其中甲第一个到、丙第三个到有甲乙丙,共1种,所以甲第一个到、丙第三个到的概率是.故选:D本题主要考查古典概型的概率求法,还考查了理解辨析的能力,属于基础题.6.C【解析】

分析:先画出满足约束条件对应的平面区域,利用平面区域的面积为9求出,然后分析平面区域多边形的各个顶点,即求出边界线的交点坐标,代入目标函数求得最大值.详解:作出不等式组对应的平面区域如图所示:则,所以平面区域的面积,解得,此时,由图可得当过点时,取得最大值9,故选C.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.7.C【解析】

根据双曲线方程求出渐近线方程:,再将点代入可得,连接,根据圆的性质可得,从而可求出,再由即可求解.【详解】由双曲线,则渐近线方程:,,连接,则,解得,所以,解得.故双曲线方程为.故选:C本题考查了双曲线的几何性质,需掌握双曲线的渐近线求法,属于中档题.8.B【解析】

利用函数奇偶性可求得在时的解析式和,进而构造出不等式求得结果.【详解】为定义在上的奇函数,.当时,,,为奇函数,,由得:或;综上所述:若,则的解集为.故选:.本题考查函数奇偶性的应用,涉及到利用函数奇偶性求解对称区间的解析式;易错点是忽略奇函数在处有意义时,的情况.9.C【解析】

根据椭圆的定义可得,,再利用余弦定理即可得到结论.【详解】由题意,,,又,则,由余弦定理可得.故.故选:C.本题考查椭圆的定义,考查余弦定理,考查运算能力,属于基础题.10.A【解析】

利用等比数列的性质可得,即可得出.【详解】设与的等比中项是.

由等比数列的性质可得,.

∴与的等比中项

故选A.本题考查了等比中项的求法,属于基础题.11.A【解析】

将已知条件转化为的形式,由此确定数列为的项.【详解】由于等差数列中,所以,化简得,所以为.故选:A本小题主要考查等差数列的基本量计算,属于基础题.12.D【解析】

求的展开式中的常数项,可转化为求展开式中的常数项和项,再求和即可得出答案.【详解】由题意,中常数项为,中项为,所以的展开式中的常数项为:.故选:D本题主要考查二项式定理的应用和二项式展开式的通项公式,考查学生计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

设切点坐标为,利用导数求出曲线在切点的切线方程,将原点代入切线方程,求出的值,于此可得出所求的切线方程.【详解】设切点坐标为,,,,则曲线在点处的切线方程为,由于该直线过原点,则,得,因此,则过原点且与曲线相切的直线方程为,故答案为.本题考查导数的几何意义,考查过点作函数图象的切线方程,求解思路是:(1)先设切点坐标,并利用导数求出切线方程;(2)将所过点的坐标代入切线方程,求出参数的值,可得出切点的坐标;(3)将参数的值代入切线方程,可得出切线的方程.14.【解析】

利用排列组合公式进行计算,再利用古典概型公式求出不是特等奖的两张的概率即可.【详解】解:3张奖券分别标有特等奖、一等奖和二等奖,甲、乙两人同时各抽取1张奖券,则两人同时抽取两张共有:种排法排除特等奖外两人选两张共有:种排法.故两人都未抽得特等奖的概率是:故答案为:本题主要考查古典概型的概率公式的应用,是基础题.15.【解析】

试题分析:作出不等式组所表示的平面区域如图,当直线过点时,最大,且考点:线性规划.16.;【解析】试题分析:如图:此几何体是四棱锥,底面是边长为的正方形,平面平面,并且,,所以体积是,解得,四个侧面都是直角三角形,所以计算出边长,表面积是考点:1.三视图;2.几何体的表面积.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1),;(2)【解析】试题分析:(1)利用等差数列,等比数列的通项公式先求得公差和公比,即得到结论;(2)利用分组求和法,由等差数列及等比数列的前n项和公式即可求得数列前n项和.试题解析:(Ⅰ)设等差数列{an}的公差为d,由题意得d===1.∴an=a1+(n﹣1)d=1n设等比数列{bn﹣an}的公比为q,则q1===8,∴q=2,∴bn﹣an=(b1﹣a1)qn﹣1=2n﹣1,∴bn=1n+2n﹣1(Ⅱ)由(Ⅰ)知bn=1n+2n﹣1,∵数列{1n}的前n项和为n(n+1),数列{2n﹣1}的前n项和为1×=2n﹣1,∴数列{bn}的前n项和为;考点:1.等差数列性质的综合应用;2.等比数列性质的综合应用;1.数列求和.18.(1);(2).【解析】

(1)令可求得的值,令时,由可得出,两式相减可得的表达式,然后对是否满足在时的表达式进行检验,由此可得出数列的通项公式;(2)求出数列的通项公式,对分奇数和偶数两种情况讨论,利用奇偶分组求和法结合等差数列和等比数列的求和公式可求得结果.【详解】(1),当时,;当时,由得,两式相减得,.满足.因此,数列的通项公式为;(2).①当为奇数时,;②当为偶数时,.综上所述,.本题考查数列通项的求解,同时也考查了奇偶分组求和法,考查计算能力,属于中等题.19.(1);(2).【解析】

(1)根据题意,建立首项和公差的方程组,通过基本量即可写出前项和;(2)由(1)中所求,结合累加法求得.【详解】(1)由题意可得即又因为,所以,所以.(2)由条件及(1)可得.由已知得,所以.又满足上式,所以本题考查等差数列通项公式和前项和的基本量的求解,涉及利用累加法求通项公式,属综合基础题.20.(1),(2)【解析】

(1)根据与可求得,再根据等比数列的基本量求解即可.(2)由(1)可得,再利用错位相减求和即可.【详解】解:(1)依题意,,设数列的公比为q,由,可知,由,得,又,则,故,又由,得.(2)依题意.,①则,②①-②得,即,故.本题主要考查了等比数列的基本量求解以及错位相减求和等.属于中档题.21.(1),.(2)【解析】

(1)由余弦定理的,然后根据直线与圆相切的性质求出,从而求出;(2)求得的表达式,通过求导研究函数的单调性求得最大值.【详解】解:(1)连.由条件得.在三角形中,,,,由余弦定理,得,因为与半圆相切于,所以,所以,所以.所以四边形的周长为,.(2)设四边形的面积为,则,.所以,.令,得列表:+0-增最大值减答:要使改建成的展示区的面积最大,的值为.本题考查余弦定理、直线与

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论