人教版九年级数学上册2024年知识点总结史上_第1页
人教版九年级数学上册2024年知识点总结史上_第2页
人教版九年级数学上册2024年知识点总结史上_第3页
人教版九年级数学上册2024年知识点总结史上_第4页
人教版九年级数学上册2024年知识点总结史上_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版九年级数学上册学问点总结

21.1一元二次方程

学问点——元二次方程的定义

等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的

方程,叫做一元二次方程。

留意一下几点:

①只含有一个未知数;②未知数的最高次数是2;③是整式方程。

学问点二一元二次方程的一般形式

一般形式:ax?+bx+c=0(aW0).其中,ax?是二次项,a是二次项系数;bx是一

次项,b是一次项系数;c是常数项。

学问点三一元二次方程的根

使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方

程的根。方程的解的定义是解方程过程中验根的依据。

21.2降次一一解一元二次方程

21.2.1配方法

学问点一干脆开平方法解一元二次方程

(1)假如方程的一边可以化成含未知数的代数式的平方,另一边是非负数,可以干脆

开平方。一般地,对于形如x2=a(a20)的方程,依据平方根的定义可解得

Xi=Vo,X2=—Vtz.

(2)干脆开平方法适用于解形如x2=p或(mx+a)2=p(^lW0)形式的方程,假如p20,就可

以利用干脆开平方法。

(3)用干脆开平方法求一元二次方程的根,要正确运用平方根的性质,即正数的平方

根有两个,它们互为相反数;零的平方根是零;负数没有平方根。

(4)干脆开平方法解一元二次方程的步骤是:①移项;②使二次项系数或含有未知数

的式子的平方项的系数为1;③两边干脆开平方,使原方程变为两个一元二次方程;

④解一元一次方程,求出原方程的根。

学问点二配方法解一元二次方程

通过配成完全平方形式来解一元二次方程的方法,叫做配方法,配方的目的是降次,把

一个一元二次方程转化为两个一元一次方程来解。

配方法的一般步骤可以总结为:一移、二除、三配、四开。

(1)把常数项移到等号的右边;⑵方程两边都除以二次项系数;

⑶方程两边都加上一次项系数一半的平方,把左边配成完全平方式;⑷若等号

右边为非负数,干脆开平方求出方程的解。

21.2.2公式法

学问点一公式法解一元二次方程

(1)一般地,对于一元二次方程ax2+bx+c=0(aW0),假如b?-4ac牝0,那么方程的两个

-b±b—4(ic

根为x=-N-------------,这个公式叫做一元二次方程的求根公式,利用求根公式,

2a

我们可以由一元二方程的系数a,b,c的值干脆求得方程的解,这种解方程的方法

叫做公式法。

(2)一元二次方程求根公式的推导过程,就是用配方法解一般形式的一元二次方程

ax2+bx+c=0(aWO)的过程。

(3)公式法解一元二次方程的具体步骤:

①方程化为一般形式:ax2+bx+c=0(a#0),一般a化为正值②确定公式中a,b,c

的值,留意符号;

③求出b2-4ac的值;④若b2-4ac^0,则把a,b,c和b-4ac的值代入公式即可求解,

若b2-4ac<0,则方程无实数根。

学问点二一元二次方程根的判别式

式子b2-4ac叫做方程ax2+bx+c=0(aW0)根的判别式,通常用希腊字母△表示它,即4

=b2-4ac.

△>0,方程ax2+bx+c=0(aW0)有两个不相等的实数根

一元二次升程△=(),方程ax2+bx+c=0(aW0)有两个相等的实数根

根的判别式

△<0,方程ax'+bx+cR(aWO)无实数根

21.2.3因式分解法

学问点一因式分解法解一元二次方程

(1)把一元二次方程的一边化为0,而另一边分解成两个一次因式的积,进而转化为求

两个求一元一次方程的解,这种解方程的方法叫做因式分解法。

(2)因式分解法的具体步骤:

①移项,将全部的项都移到左边,右边化为0;

②把方程的左边分解成两个因式的积,可用的方法有提公因式、平方差公式和完全平方

公式;

③令每一个因式分别为零,得到一元一次方程;

④解一元一次方程即可得到原方程的解。

学问点二用合适的方法解一元一次方程

方法名理论依据适用范围

干脆开平平方根的意形如x2=p或(mx+n)2=p(p

方法义20)

配方法完全平方公式全部一元二次方程

公式法配方法全部一元二次方程

因式分解当ab=O,则a=0一边为0,另一边易于分解

法或b=0成两个一次因式的积的一

元二次方程。

21.2.4一元二次方程的根与系数的关系

2

若一元二次方程x+px+q=0的两个根为Xi,X2,则有xi+x2=-p,XiX2=q.

若一元二次方程a2x+bx+c=0(aWO)有两个实数根xx,则有xi+x=,XiX=-

b22a2a

22.3实际问题与一元二次方程

学问点一列一元二次方程解应用题的一般步骤:

(1)审:是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量以及它们之间

的等量关系。

(2)设:是指设元,也就是设出未知数。

(3)歹[J:就是列方程,这是关键步骤,一般先找出能够表达应用题全部含义的一个相等

含义,然后列代数式表示这个相等关系中的各个量,就得到含有未知数的等式,

即方程。

(4)解:就是解方程,求出未知数的值。

(5)验:是指检验方程的解是否保证明际问题有意义,符合题意。

(6)答:写出答案。

学问点二列一元二次方程解应用题的几种常见类型

(1)数字问题

三个连续整数:若设中间的一个数为X,则另两个数分别为xT,x+lo

三个连续偶数(奇数):若中间的一个数为x,则另两个数分别为x-2,x+2。

三位数的表示方法:设百位、十位、个位上的数字分别为a,b,c,则这个三位数是

100a+10b+c.

(2)增长率问题

设初始量为a,终止量为b,平均增长率或平均降低率为x,则经过两次的增长或降低后

的等量关系为a(1+x)2=bo

(3)利润问题

利润问题常用的相等关系式有:①总利润:总销售价-总成本;②总利润:单位利润X总

销售量;③利润;成本X利润率

(4)图形的面积问题

依据图形的面积与图形的边、高等相关元素的关系,将图形的面积用含有未知数的代数

式表示出来,建立一元二次方程。

二次函数学问点归纳及相关典型题

第一部分基础学问

1.定义:一般地,假如y=/+6x+c(a,仇c是常数,a/O),那么y叫做x的二次函数.

2.二次函数丁=依2的性质

(1)抛物线y=的顶点是坐标原点,对称轴是y轴.

(2)函数>=依2的图像与。的符号关系.

①当a>0时o抛物线开口向上o顶点为其最低点;

②当a<0时o抛物线开口向下o顶点为其最高点.

(3)顶点是坐标原点,对称轴是y轴的抛物线的解析式形式为y=(a彳0).

3.二次函数y=a/+bx+c的图像是对称轴平行于(包括重合)y轴的抛物线.

4.二次函数y=ax2+bx+c用配方法可化成:y=a(x-h)2^k的形式,其中

7b7^ac-b2

rl-,K—•

2a4〃

5.二次函数由特殊到一般,可分为以下几种形式:①尸一;②尸公2+心③好小_”)2;

④y=a(x-A)2+k;⑤y=ax2+bx+c.

6.抛物线的三要素:开口方向、对称轴、顶点.

①a的符号确定抛物线的开口方向:当a>0时,开口向上;当a<0时,开口向下;

时相等,抛物线的开口大小、形态相同.

②平行于y轴(或重合)的直线记作x=机特殊地,y轴记作直线x=0.

7.顶点确定抛物线的位置.几个不同的二次函数,假如二次项系数a相同,那么抛物线的

开口方向、开口大小完全相同,只是顶点的位置不同.

8.求抛物线的顶点、对称轴的方法

(1)公式法:y=ax1+bx+c=a(x+—,•,•顶点是(一2,^^——)J对称轴是

2a)4ala4a

直线x=-2.

la

(2)配方法:运用配方的方法,将抛物线的解析式化为y=a(x-4+左的形式,得到顶

点、为(h,k),对称轴是直线%=〃.

(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的

连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.

用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.

9.抛物线y=ax?+6x+c中,a,,c的作用

(1)a确定开口方向及开口大小,这与y=中的a完全一样.

(2)b和。共同确定抛物线对称轴的位置.由于抛物线ynad+bx+c的对称轴是直线

x=-—,故:①6=0时,对称轴为y轴;②2〉0(即外匕同号)时,对称轴在y轴

laa

左侧;③2<0(即a、b异号)时,对称轴在y轴右侧.

(3)c的大小确定抛物线y=/+bx+c与y轴交点的位置.

当x=0时,y=c,•♦•抛物线y=6+法+。与y轴有且只有一个交点(0,c):

①c=O,抛物线经过原点;②c>0,与y轴交于正半轴;③c<0,与y轴交于负半

轴.

以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y轴右侧,则

2<0.

a

10.几种特殊的二次函数的图像特征如下:

函数解析式开口方向对称轴顶点坐标

y=ax2x=O(y轴)(0,0)

y=ax2+kx=O(y轴)(0,k)

y=a(x-7z)2x-h(m0)

y=a{x-hf+k当a>0时x-h(h,k)

b

y=ax2+bx+c开口向上x=---(b4ac-b2

la

2a4a

当a<0时

)

开口向下

11.用待定系数法求二次函数的解析式

(1)一般式:y=&+6x+c.已知图像上三点或三对X、y的值,通常选择一般式.

(2)顶点式:y=a(x-犷+h已知图像的顶点或对称轴,通常选择顶点式.

(3)交点式:已知图像与x轴的交点坐标七、4,通常选用交点式:y=a(x-M)(x-%).

12.直线与抛物线的交点

(1)y轴与抛物线卜&+bx+c得交点为(0,c).

(2)与y轴平行的直线x=7i与抛物线y=以2+法+c有且只有一■个交点(//,ah2+bh+c).

(3)抛物线与x轴的交点

二次函数了=以2+法+。的图像与x轴的两个交点的横坐标修、x2,是对应一元二次

方程"2+法+c=。的两个实数根.抛物线与X轴的交点状况可以由对应的一元二次

方程的根的判别式判定:

①有两个交点oA>0o抛物线与X轴相交;

②有一个交点(顶点在x轴上)oA=0o抛物线与x轴相切;

③没有交点oA<0o抛物线与%轴相离.

(4)平行于x轴的直线与抛物线的交点

同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的

纵坐标相等,设纵坐标为左,则横坐标是双之+法+0=左的两个实数根.

(5)一次函数y=kx+n(k主0)的图像/与二次函数y=ax-+6x+c(aw0)的图像G的交点,

由方程组丘:"的解的数目来确定:①方程组有两组不同的解时o/与G

y=ax+bx+c

有两个交点;②方程组只有一组解时。/与G只有一个交点;③方程组无解时。/

与G没有交点.

(6)抛物线与x轴两交点之间的距离:若抛物线丁=以2+法+。与x轴两交点为

B(X2,0),由于X]、%是方程ax?=0的两个根,故

其次十三章旋转

23.1图形的旋转

学问点一旋转的定义

在平面内,把一个平面图形围着平面内某一点。转动一个角度,就叫做图形的旋转,点

。叫做旋转中心,转动的角叫做旋转角。

我们把旋转中心、旋转角度、旋转方向称为旋转的三要素。

学问点二旋转的性质

旋转的特征:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹

角等于旋转角;(3)旋转前后的图形全等。

理解以下几点:

(1)图形中的每一个点都绕旋转中心旋转了同样大小的角度。(2)对应点到旋转中心

的距离相等,对应线段相等,对应角相等。(3)图形的大小和形态都没有发生变

更,只变更了图形的位置。

学问点三利用旋转性质作图

旋转有两条重要性质:(1)随意一对对应点与旋转中心所连线段的夹角等于旋转角;(2)

对应点到旋转中心的距离相等,它是利用旋转的性质作图的关键。步骤可分为:

①连:即连接图形中每一个关键点与旋转中心;②转:即把直线按要求绕旋转中心

转过肯定角度(作旋转角)

③截:即在角的另一边上截取关键点到旋转中心的距离,得到各点的对应点;④接:

即连接到所连接的各点。

23.2中心对称

学问点一中心对称的定义

中心对称:把一个图形围着某一个点旋转180。,假如它能够与另一个图形重合,那么

就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。

留意以下几点:

中心对称指的是两个图形的位置关系;只有一个对称中心;绕对称中心旋转180。两个

图形能够完全重合。

学问点二作一个图形关于某点对称的图形

要作出一个图形关于某一点的成中心对称的图形,关键是作出该图形上关键点关于对称

中心的对称点。最终将对称点依据原图形的形态连接起来,即可得出成中心对称图形。

学问点三中心对称的性质

有以下几点:

(1)关于中心对称的两个图形上的对应点的连线都经过对称中心,并且都被对称中心

平分;

(2)关于中心对称的两个图形能够相互重合,是全等形;

(3)关于中心对称的两个图形,对应线段平行(或共线)且相等。

学问点四中心对称图形的定义

把一个图形围着某一个点旋转180。,假如旋转后的图形能够与原来的图形重合,那么

这个图形叫做中心对称图形,这个点就是它的对称中心。

学问点五关于原点对称的点的坐标

在平面直角坐标系中,假如两个点关于原点对称,它们的坐标符号相反,即点p(x,y)

关于原点对称点为(-x,-y)o

其次十四章圆

24.1圆

24.1.1圆

学问点一圆的定义

圆的定义:第一种:在一个平面内,线段OA绕它固定的一个端点。旋转一周,另一个

端点A所形成的图形叫作圆。固定的端点。叫作圆心,线段OA叫作半径。其次种:圆

心为0,半径为r的圆可以看成是全部到定点0的距离等于定长r的点的集合。

比较圆的两种定义可知:第一种定义是圆的形成进行描述的,其次种是运用集合的观

点下的定义,但是都说明确定了定点与定长,也就确定了圆。

学问点二圆的相关概念

(1)弦:连接圆上随意两点的线段叫做弦,经过圆心的弦叫作直径。

(2)弧:圆上随意两点间的部分叫做圆弧,简称弧。圆的随意一条直径的两个端点把

圆分成两条弧,每一条弧都叫做半圆。

(3)等圆:等够重合的两个圆叫做等圆。

(4)等弧:在同圆或等圆中,能够相互重合的弧叫做等弧。

弦是线段,弧是曲线,推断等弧首要的条件是在同圆或等圆中,只有在同圆或等圆中完

全重合的弧才是等弧,而不是长度相等的弧。

24.1.2垂直于弦的直径

学问点一圆的对称性

圆是轴对称图形,任何一条直径所在直线都是它的对称轴。

学问点二垂径定理

(1)垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。如图所示,直径

c

为CD,AB是弦,且CDLAB,

AD=BD

垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

如上图所示,直径CD与非直径弦AB相交于点M,

VCD±AB

AM=BMAC=BC

AD=BD

留意:因为圆的两条直径必需相互平分,所以垂径定理的推论中,被平分的弦必需不

是直径,否则结论不成立。

24.1.3弧、弦、圆心角

学问点弦、弧、圆心角的关系

(1)弦、弧、圆心角之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相

等,所对的弦也相等。

(2)在同圆或等圆中,假如两个圆心角,两条弧,两条弦中有一组量相等,那么它

们所对应的其余的各组量也相等。

(3)留意不能忽视同圆或等圆这个前提条件,假如丢掉这个条件,即使圆心角相等,

所对的弧、弦也不肯定相等,比如两个同心圆中,两个圆心角相同,但此时弧、

弦不肯定相等。

24.1.4圆周角

学问点一圆周角定理

(1)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所

对的圆心角的一半。

(2)圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对弦

是直径。

(3)圆周角定理揭示了同弧或等弧所对的圆周角与圆心角的大小关系。“同弧或等弧”

是不能改为“同弦或等弦”的,否则就不成立了,因为一条弦所对的圆周角有两

类。

学问点二圆内接四边形及其性质

圆内接多边形:假如一个多边形的全部顶点都在同一个圆上,这个多边形叫做圆内接

多边形,这个圆叫做这个多边形的外接圆。

圆内接四边形的性质:圆内接四边形的对角互补。

24.2点、直线、圆和圆的位置关系

24.2.1点和圆的位置关系

学问点一点与圆的位置关系

(1)点与圆的位置关系有:点在圆外,点在圆上,点在圆内三种。

(2)用数量关系表示:若设。。的半径是r,点P到圆的距离0P=d,则有:

点P在圆外Qd>r;点p在圆上Qd=r;点p在圆内Qd<ro

学问点二过已知点作圆

(1)经过一个点的圆(如点A)

以点A外的随意一点(如点0)为圆心,以0A为半径作圆即可,如图,这样的圆可以作

多数个。

,02

•03

(2)经过两点的圆(如点A、B)

以线段AB的垂直平分线上的随意一点(如点0)为圆心,以0A(或0B)为半径作圆即

可,如图,这样的圆可以作多数个。

B

(3)经过三点的圆

①经过在同一条直线上的三个点不能作圆

②不在同一条直线上的三个点确定一个圆,即经过不在同一条直线上的三个点可以作

圆,且只能作一个圆。如经过不在同一条直线上的三个点A、B、C作圆,作法:连接

AB、BC(或AB、AC或BC、AC)并作它们的垂直平分线,两条垂直平分线相交于点0,

以点。为圆心,以0A(或OB、0C)的长为半径作圆即可,如图,这样的圆只能作一

个。

BC

学问点三三角形的外接圆与外心

(1)经过三角形三个顶点可以作一个圆,这个圆叫做三角形的外接圆。

(2)外接圆的圆心是三角形三条边的垂直平分线的交点,叫做这个三角形的外心。

学问点四反证法

(1)反证法:假设命题的结论不成立,经过推理得出冲突,由冲突断定所作假设不正

确,从而得到原命题成立,这种证明命题的方法叫做反证法。

(2)反证法的一般步骤:

①假设命题的结论不成立;

②从假设动身,经过逻辑推理,推出或与定义,或与公理,或与定理,或与已知等相冲

突的结论;

③由冲突判定假设不正确,从而得出原命题正确。

24.2.2直线和圆的位置关系

学问点一直线与圆的位置关系

(1)直线与圆的位置关系有:相交、相切、相离三种。

(2)直线与圆的位置关系可以用数量关系表示

若设。。的半径是r,直线1与圆心0的距离为d,则有:

直线1和。夕箱交d<r;雷线1和。。相切V=r;直线1和。0

相离d>ro

学问点二切线的判定和性质

(1)切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。

(2)切线的性质定理:圆的切线垂直于过切点的半径。

(3)切线的其他性质:切线与圆只有一个公共点;切线到圆心的距离等于半径;经过

圆心且垂直于切线的直线必过切点;必过切点且垂直于切线的直线必经过圆心。

学问点三切线长定理

(1)切线长的定义:经过园外一点作圆的切线,这点和切点之间的线段的长,叫做这

点到圆的切线长。

(2)切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆

心的连线平分两条切线的夹角。

(3)留意:切线和切线长是两个完全不同的概念,必需弄清晰切线是直线,是不能度

量的;切线长是一条线段的长,这条线段的两个端点一个是在圆外一点,另一个

是切点。

学问点四三角形的内切圆和内心

(1)三角形的内切圆定义:与三角形各边都相切的圆叫做三角形的内切圆。这个三角

形叫做圆的外切三角形。

(2)三角形的内心:三角形内切圆的圆心叫做三角形的内心。

(3)留意:三角形的内心是三角形三条角平分线的交点,所以当三角形的内心已知时,

过三角形的顶点和内心的射线,必平分三角形的内角。

24.2.3圆和圆的位置关系

学问点一圆与圆的位置关系

(1)圆与圆的位置关系有五种:

①假如两个圆没有公共点,就说这两个圆相离,包括外离和内含两种;

②假如两个圆只有一个公共点,就说这两个圆相切,包括内切和外切两种;

③假如两个圆有两个公共点,就说这两个圆相交。

(2)圆与圆的位置关系可以用数量关系来表示:

若设两圆圆心之间的距离为d,两圆的半径分别是nn,且n<c,则有

两圆外离Qd>n+n两圆外切=d=n+n/两圆相交口r2-ri<d<ri+r2两圆

内切d=r2~ri两圆内含—d<r2-ri

24.3正多边形和圆

学问点一正多边形的外接圆和圆的内接正多边形

正多边形与圆的关系特别亲密,把圆分成n(n是大于2的自然数)等份,顺次连接各

分点所得的多边形是这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。

正多边形的中心:一个正多边形的外接圆的圆心叫做这个正多边形的中心。

正多边形的半径:外接圆的半径叫做正多边形的半径。

正多边形的中心角:正多边形每一条边所对的圆心角叫做正多边形的中心角。

正多边形的边心距:中心到正多边形一边的距离叫做正多边形的边心距。

学问点二正多边形的性质

(1)正n边形的半径和边心距把正多边形分成2n个全等的直角三角形。

(2)全部的正多边形都是轴对称图形,每个正n边形共有n条对称轴,每条对称轴都

经过正n边形的中心;当正n边形的边数为偶数时,这个正n边形也是中心对称

图形,正n边形的中心就是对称中心。

(3)正,边形的每一个内角等于5-2)x180。,中心角和外角相等,等于幽。

nn

24.4弧长和扇形面积

学问点一弧长公式1=过

180

在半径为R的圆中,360°的圆心角所对的弧长就是圆的周长C=2“R,所以n。的圆心

角所对的弧长的计算公式1=—X2"R=些o

360180

学问点二扇形面积公式

在半径为R的圆中,360°的圆心角所对的扇形面积就是圆的面积S=口R?,所以圆心角

为n°的扇形的面积为S扇形二嗡。

比较扇形的弧长公式和面积公式发觉:

2

o_n7iRn兀R1八17n匚匚〜1

1r?t

S扇形一耳—=而又5氏=5〃?'所以5扇形=5"

学问点三圆锥的侧面积和全面积

圆锥的侧面积是曲面,沿着圆锥的一条母线将圆锥的侧面绽开,简单得到圆锥的侧面绽

开图是一个扇形。设圆锥的母线长为1,底面圆的半径为r,那么这个扇形的半径为1,

扇形的弧长为2nr,因此圆锥的侧面积$=工.2"./=加。圆锥的全面积为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论