




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024-2025学年北京市中学国人民大附属中学初三第二学期月考试卷(二)数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.对于两组数据A,B,如果sA2>sB2,且,则()A.这两组数据的波动相同 B.数据B的波动小一些C.它们的平均水平不相同 D.数据A的波动小一些2.已知实数a<0,则下列事件中是必然事件的是()A.a+3<0 B.a﹣3<0 C.3a>0 D.a3>03.小张同学制作了四张材质和外观完全一样的书签,每个书签上写着一本书的名称或一个作者姓名,分别是:《西游记》、施耐庵、《安徒生童话》、安徒生,从这四张书签中随机抽取两张,则抽到的书签正好是相对应的书名和作者姓名的概率是()A. B. C. D.4.用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间.A.B与C B.C与D C.E与F D.A与B5.如果向北走6km记作+6km,那么向南走8km记作()A.+8kmB.﹣8kmC.+14kmD.﹣2km6.如图,点A所表示的数的绝对值是()A.3 B.﹣3 C. D.7.下列计算正确的是()A.()2=±8 B.+=6 C.(﹣)0=0 D.(x﹣2y)﹣3=8.如图,在四边形ABCD中,∠A=120°,∠C=80°.将△BMN沿着MN翻折,得到△FMN.若MF∥AD,FN∥DC,则∠F的度数为()A.70° B.80° C.90° D.100°9.下列运算正确的是()A.4x+5y=9xy B.(−m)3•m7=m10C.(x3y)5=x8y5 D.a12÷a8=a410.如图,按照三视图确定该几何体的侧面积是(单位:cm)()A.24πcm2 B.48πcm2 C.60πcm2 D.80πcm211.下列事件中,属于不确定事件的是()A.科学实验,前100次实验都失败了,第101次实验会成功B.投掷一枚骰子,朝上面出现的点数是7点C.太阳从西边升起来了D.用长度分别是3cm,4cm,5cm的细木条首尾顺次相连可组成一个直角三角形12.要使式子有意义,x的取值范围是()A.x≠1 B.x≠0 C.x>﹣1且≠0 D.x≥﹣1且x≠0二、填空题:(本大题共6个小题,每小题4分,共24分.)13.中,,,高,则的周长为______。14.如图,在△ABC中,∠A=60°,若剪去∠A得到四边形BCDE,则∠1+∠2=______.15.如图,在网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠OAB的正弦值是_____.16.矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于_____.17.如图,点A在反比例函数y=(x>0)的图像上,过点A作AD⊥y轴于点D,延长AD至点C,使CD=2AD,过点A作AB⊥x轴于点B,连结BC交y轴于点E,若△ABC的面积为6,则k的值为________.18.如图,点O(0,0),B(0,1)是正方形OBB1C的两个顶点,以对角线OB1为一边作正方形OB1B2C1,再以正方形OB1B2C1的对角线OB2为一边作正方形OB2B3C2,……,依次下去.则点B6的坐标____________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)八年级(1)班学生在完成课题学习“体质健康测试中的数据分析”后,利用课外活动时间积极参加体育锻炼,每位同学从篮球、跳绳、立定跳远、长跑、铅球中选一项进行训练,训练后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图.请你根据上面提供的信息回答下列问题:扇形图中跳绳部分的扇形圆心角为度,该班共有学生人,训练后篮球定时定点投篮平均每个人的进球数是.老师决定从选择铅球训练的3名男生和1名女生中任选两名学生先进行测试,请用列表或画树形图的方法求恰好选中两名男生的概率.20.(6分)如图,AB是⊙O的直径,,连结AC,过点C作直线l∥AB,点P是直线l上的一个动点,直线PA与⊙O交于另一点D,连结CD,设直线PB与直线AC交于点E.求∠BAC的度数;当点D在AB上方,且CD⊥BP时,求证:PC=AC;在点P的运动过程中①当点A在线段PB的中垂线上或点B在线段PA的中垂线上时,求出所有满足条件的∠ACD的度数;②设⊙O的半径为6,点E到直线l的距离为3,连结BD,DE,直接写出△BDE的面积.21.(6分)如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于E.求证:△AFE≌△CDF;若AB=4,BC=8,求图中阴影部分的面积.22.(8分)阅读材料:对于线段的垂直平分线我们有如下结论:到线段两个端点距离相等的点在线段的垂直平分线上.即如图①,若PA=PB,则点P在线段AB的垂直平分线上请根据阅读材料,解决下列问题:如图②,直线CD是等边△ABC的对称轴,点D在AB上,点E是线段CD上的一动点(点E不与点C、D重合),连结AE、BE,△ABE经顺时针旋转后与△BCF重合.(I)旋转中心是点,旋转了(度);(II)当点E从点D向点C移动时,连结AF,设AF与CD交于点P,在图②中将图形补全,并探究∠APC的大小是否保持不变?若不变,请求出∠APC的度数;若改变,请说出变化情况.23.(8分)如图,在ABCD中,点E是AB边的中点,DE与CB的延长线交于点F(1)求证:△ADE≌△BFE;(2)若DF平分∠ADC,连接CE,试判断CE和DF的位置关系,并说明理由.24.(10分)如图,在每个小正方形的边长为1的网格中,点A,B,M,N均在格点上,P为线段MN上的一个动点(1)MN的长等于_______,(2)当点P在线段MN上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的,(不要求证明)25.(10分)(11分)阅读资料:如图1,在平面之间坐标系xOy中,A,B两点的坐标分别为A(x1,y1),B(x1,y1),由勾股定理得AB1=|x1﹣x1|1+|y1﹣y1|1,所以A,B两点间的距离为AB=.我们知道,圆可以看成到圆心距离等于半径的点的集合,如图1,在平面直角坐标系xoy中,A(x,y)为圆上任意一点,则A到原点的距离的平方为OA1=|x﹣0|1+|y﹣0|1,当⊙O的半径为r时,⊙O的方程可写为:x1+y1=r1.问题拓展:如果圆心坐标为P(a,b),半径为r,那么⊙P的方程可以写为.综合应用:如图3,⊙P与x轴相切于原点O,P点坐标为(0,6),A是⊙P上一点,连接OA,使tan∠POA=,作PD⊥OA,垂足为D,延长PD交x轴于点B,连接AB.①证明AB是⊙P的切点;②是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写出以Q为圆心,以OQ为半径的⊙O的方程;若不存在,说明理由.26.(12分)计算:(-)-2–2()+27.(12分)某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元.求A市投资“改水工程”的年平均增长率;从2008年到2010年,A市三年共投资“改水工程”多少万元?
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】试题解析:方差越小,波动越小.数据B的波动小一些.故选B.点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.2、B【解析】A、a+3<0是随机事件,故A错误;B、a﹣3<0是必然事件,故B正确;C、3a>0是不可能事件,故C错误;D、a3>0是随机事件,故D错误;故选B.点睛:本题考查了随机事件.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件指一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3、D【解析】
根据题意先画出树状图得出所有等情况数和到的书签正好是相对应的书名和作者姓名的情况数,再根据概率公式即可得出答案.【详解】解:根据题意画图如下:共有12种等情况数,抽到的书签正好是相对应的书名和作者姓名的有2种情况,则抽到的书签正好是相对应的书名和作者姓名的概率是=;故选D.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.4、A【解析】试题分析:在计算器上依次按键转化为算式为﹣=-1.414…;计算可得结果介于﹣2与﹣1之间.故选A.考点:1、计算器—数的开方;2、实数与数轴5、B【解析】
正负数的应用,先判断向北、向南是不是具有相反意义的量,再用正负数表示出来【详解】解:向北和向南互为相反意义的量.若向北走6km记作+6km,那么向南走8km记作﹣8km.故选:B.本题考查正负数在生活中的应用.注意用正负数表示的量必须是具有相反意义的量.6、A【解析】
根据负数的绝对值是其相反数解答即可.【详解】|-3|=3,故选A.此题考查绝对值问题,关键是根据负数的绝对值是其相反数解答.7、D【解析】
各项中每项计算得到结果,即可作出判断.【详解】解:A.原式=8,错误;B.原式=2+4,错误;C.原式=1,错误;D.原式=x6y﹣3=,正确.故选D.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.8、B【解析】
首先利用平行线的性质得出∠BMF=120°,∠FNB=80°,再利用翻折变换的性质得出∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,进而求出∠B的度数以及得出∠F的度数.【详解】∵MF∥AD,FN∥DC,∠A=120°,∠C=80°,
∴∠BMF=120°,∠FNB=80°,
∵将△BMN沿MN翻折得△FMN,
∴∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,
∴∠F=∠B=180°-60°-40°=80°,
故选B.主要考查了平行线的性质以及多边形内角和定理以及翻折变换的性质,得出∠FMN=∠BMN,∠FNM=∠MNB是解题关键.9、D【解析】
各式计算得到结果,即可作出判断.【详解】解:A、4x+5y=4x+5y,错误;B、(-m)3•m7=-m10,错误;C、(x3y)5=x15y5,错误;D、a12÷a8=a4,正确;故选D.此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.10、A【解析】
由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其侧面积.【详解】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6cm,底面半径为8÷1=4cm,故侧面积=πrl=π×6×4=14πcm1.故选:A.此题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.11、A【解析】
根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、是随机事件,故A符合题意;B、是不可能事件,故B不符合题意;C、是不可能事件,故C不符合题意;D、是必然事件,故D不符合题意;故选A.本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12、D【解析】
根据二次根式由意义的条件是:被开方数大于或等于1,和分母不等于1,即可求解.【详解】根据题意得:,解得:x≥-1且x≠1.故选:D.本题考查的知识点为:分式有意义,分母不为1;二次根式的被开方数是非负数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、32或42【解析】
根据题意,分两种情况讨论:①若∠ACB是锐角,②若∠ACB是钝角,分别画出图形,利用勾股定理,即可求解.【详解】分两种情况讨论:①若∠ACB是锐角,如图1,∵,,高,∴在Rt∆ABD中,,即:,同理:,∴的周长=9+5+15+13=42,②若∠ACB是钝角,如图2,∵,,高,∴在Rt∆ABD中,,即:,同理:,∴的周长=9-5+15+13=32,故答案是:32或42.本题主要考查勾股定理,根据题意,画出图形,分类进行计算,是解题的关键.14、240.【解析】
试题分析:∠1+∠2=180°+60°=240°.考点:1.三角形的外角性质;2.三角形内角和定理.15、【解析】
如图,过点O作OC⊥AB的延长线于点C,则AC=4,OC=2,在Rt△ACO中,AO=,∴sin∠OAB=.故答案为.16、7516【解析】试题分析:要求重叠部分△AEF的面积,选择AF作为底,高就等于AB的长;而由折叠可知∠AEF=∠CEF,由平行得∠CEF=∠AFE,代换后,可知AE=AF,问题转化为在Rt△ABE中求AE.因此设AE=x,由折叠可知,EC=x,BE=4﹣x,在Rt△ABE中,AB2+BE2=AE2,即32+(4﹣x)2=x2,解得:x=258,即AE=AF=25因此可求得S△AEF=12×AF×AB=12×考点:翻折变换(折叠问题)17、1【解析】
连结BD,利用三角形面积公式得到S△ADB=S△ABC=2,则S矩形OBAD=2S△ADB=1,于是可根据反比例函数的比例系数k的几何意义得到k的值.【详解】连结BD,如图,∵DC=2AD,∴S△ADB=S△BDC=S△BAC=×6=2,∵AD⊥y轴于点D,AB⊥x轴,∴四边形OBAD为矩形,∴S矩形OBAD=2S△ADB=2×2=1,∴k=1.故答案为:1.本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.18、(-1,0)【解析】根据已知条件由图中可以得到B1所在的正方形的对角线长为,B2所在的正方形的对角线长为()2,B3所在的正方形的对角线长为()3;B4所在的正方形的对角线长为()4;B5所在的正方形的对角线长为()5;可推出B6所在的正方形的对角线长为()6=1.又因为B6在x轴负半轴,所以B6(-1,0).解:如图所示∵正方形OBB1C,∴OB1=,B1所在的象限为第一象限;∴OB2=()2,B2在x轴正半轴;∴OB3=()3,B3所在的象限为第四象限;∴OB4=()4,B4在y轴负半轴;∴OB5=()5,B5所在的象限为第三象限;∴OB6=()6=1,B6在x轴负半轴.∴B6(-1,0).故答案为(-1,0).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)36,40,1;(2).【解析】
(1)先求出跳绳所占比例,再用比例乘以360°即可,用篮球的人数除以所占比例即可;根据加权平均数的概念计算训练后篮球定时定点投篮人均进球数.(2)画出树状图,根据概率公式求解即可.【详解】(1)扇形图中跳绳部分的扇形圆心角为360°×(1-10%-20%-10%-10%)=36度;
该班共有学生(2+1+7+4+1+1)÷10%=40人;
训练后篮球定时定点投篮平均每个人的进球数是=1,
故答案为:36,40,1.(2)三名男生分别用A1,A2,A3表示,一名女生用B表示.根据题意,可画树形图如下:由上图可知,共有12种等可能的结果,选中两名学生恰好是两名男生(记为事件M)的结果有6种,∴P(M)==.20、(1)45°;(2)见解析;(3)①∠ACD=15°;∠ACD=105°;∠ACD=60°;∠ACD=120°;②36或.【解析】
(1)易得△ABC是等腰直角三角形,从而∠BAC=∠CBA=45°;(2)分当B在PA的中垂线上,且P在右时;B在PA的中垂线上,且P在左;A在PB的中垂线上,且P在右时;A在PB的中垂线上,且P在左时四中情况求解;(3)①先说明四边形OHEF是正方形,再利用△DOH∽△DFE求出EF的长,然后利用割补法求面积;②根据△EPC∽△EBA可求PC=4,根据△PDC∽△PCA可求PD•PA=PC2=16,再根据S△ABP=S△ABC得到,利用勾股定理求出k2,然后利用三角形面积公式求解.【详解】(1)解:(1)连接BC,∵AB是直径,∴∠ACB=90°.∴△ABC是等腰直角三角形,∴∠BAC=∠CBA=45°;(2)解:∵,∴∠CDB=∠CDP=45°,CB=CA,∴CD平分∠BDP又∵CD⊥BP,∴BE=EP,即CD是PB的中垂线,∴CP=CB=CA,(3)①(Ⅰ)如图2,当B在PA的中垂线上,且P在右时,∠ACD=15°;(Ⅱ)如图3,当B在PA的中垂线上,且P在左,∠ACD=105°;(Ⅲ)如图4,A在PB的中垂线上,且P在右时∠ACD=60°;(Ⅳ)如图5,A在PB的中垂线上,且P在左时∠ACD=120°②(Ⅰ)如图6,,.(Ⅱ)如图7,,,.,.,,,.设BD=9k,PD=2k,,,,.本题是圆的综合题,熟练掌握30°角所对的直角边等于斜边的一半,平行线的性质,垂直平分线的性质,相似三角形的判定与性质,圆周角定理,圆内接四边形的性质,勾股定理,同底等高的三角形的面积相等是解答本题的关键.21、(1)证明见解析;(2)1.【解析】试题分析:(1)根据矩形的性质得到AB=CD,∠B=∠D=90°,根据折叠的性质得到∠E=∠B,AB=AE,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AF=CF,EF=DF,根据勾股定理得到DF=3,根据三角形的面积公式即可得到结论.试题解析:(1)∵四边形ABCD是矩形,∴AB=CD,∠B=∠D=90°,∵将矩形ABCD沿对角线AC翻折,点B落在点E处,∴∠E=∠B,AB=AE,∴AE=CD,∠E=∠D,在△AEF与△CDF中,∵∠E=∠D,∠AFE=∠CFD,AE=CD,∴△AEF≌△CDF;(2)∵AB=4,BC=8,∴CE=AD=8,AE=CD=AB=4,∵△AEF≌△CDF,∴AF=CF,EF=DF,∴DF2+CD2=CF2,即DF2+42=(8﹣DF)2,∴DF=3,∴EF=3,∴图中阴影部分的面积=S△ACE﹣S△AEF=×4×8﹣×4×3=1.点睛:本题考查了翻折变换﹣折叠的性质,熟练掌握折叠的性质是解题的关键.22、B60【解析】分析:(1)根据旋转的性质可得出结论;(2)根据旋转的性质可得BF=CF,则点F在线段BC的垂直平分线上,又由AC=AB,可得点A在线段BC的垂直平分线上,由AF垂直平分BC,即∠CQP=90,进而得出∠APC的度数.详解:(1)B,60;(2)补全图形如图所示;的大小保持不变,理由如下:设与交于点∵直线是等边的对称轴∴,∵经顺时针旋转后与重合∴,∴∴点在线段的垂直平分线上∵∴点在线段的垂直平分线上∴垂直平分,即∴点睛:本题考查了旋转的性质,解题的关键是熟记旋转的性质及垂直平分线的性质,注意只证明一点是不能说明这条直线是垂直平分线的.23、(1)见解析;(1)见解析.【解析】
(1)由全等三角形的判定定理AAS证得结论.(1)由(1)中全等三角形的对应边相等推知点E是边DF的中点,∠1=∠1;根据角平分线的性质、等量代换以及等角对等边证得DC=FC,则由等腰三角形的“三合一”的性质推知CE⊥DF.【详解】解:(1)证明:如图,∵四边形ABCD是平行四边形,∴AD∥BC.又∵点F在CB的延长线上,∴AD∥CF.∴∠1=∠1.∵点E是AB边的中点,∴AE=BE,∵在△ADE与△BFE中,,∴△ADE≌△BFE(AAS).(1)CE⊥DF.理由如下:如图,连接CE,由(1)知,△ADE≌△BFE,∴DE=FE,即点E是DF的中点,∠1=∠1.∵DF平分∠ADC,∴∠1=∠2.∴∠2=∠1.∴CD=CF.∴CE⊥DF.24、(1);(2)见解析.【解析】
(1)根据勾股定理即可得到结论;
(2)取格点S,T,得点R;取格点E,F,得点G;连接GR交MN于点P即可得到结果.【详解】(1);(2)取格点S,T,得点R;取格点E,F,得点G;连接GR交MN于点P本题考查了作图-应用与设计作图,轴对称-最短距离问题,正确的作出图形是解题的关键.25、问题拓展:(x﹣a)1+(y﹣b)1=r1综合应用:①见解析②点Q的坐标为(4,3),方程为(x﹣4)1+(y﹣3)1=15.【解析】试题分析:问题拓展:设A(x,y)为⊙P上任意一点,则有AP=r,根据阅读材料中的两点之间距离公式即可求出⊙P的方程;综合应用:①由PO=PA,PD⊥OA可得∠OPD=∠APD,从而可证到△POB≌△PAB,则有∠POB=∠PAB.由⊙P与x轴相切于原点O可得∠POB=90°,即可得到∠PAB=90°,由此可得AB是⊙P的切线;②当点Q在线段BP中点时,根据直角三角形斜边上的中线等于斜边的一半可得QO=QP=BQ=AQ.易证∠OBP=∠POA,则有t
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 少先队知识之解
- 大班心理健康教育活动
- 2024-2025学年下学期高三英语外研社版同步经典题精练之非谓语动词
- 感染性胃肠炎护理
- 红领巾心向党主题班队会
- 机械制造基础课件-金属切削加工
- 10kv高压倒闸操作
- 小学语文《半截蜡烛》解析
- 2019-2025年教师招聘之中学教师招聘高分通关题型题库附解析答案
- 统编版2024-2025学年语文三年级下册第八单元达标测评卷(含答案)
- 过程审核检查表-示例
- 二年级上册音乐课程纲要
- 专职安全管理机构设置文件范本
- APQP第四版讲义培训
- 国家中小学智慧教育平台使用案例
- 2.PaleoScan详细操作流程
- 驾驶员从业资格证电子版
- vas疼痛评分完整版
- 股骨粗隆间骨折合并下肢静脉血栓的护理查房
- 文体中心物业管理服务方案
- 航线与港口中东印巴红海航线
评论
0/150
提交评论