2025届新疆维吾尔自治区新疆生产建设兵团二中高三下学期5月考试数学试题试卷含解析_第1页
2025届新疆维吾尔自治区新疆生产建设兵团二中高三下学期5月考试数学试题试卷含解析_第2页
2025届新疆维吾尔自治区新疆生产建设兵团二中高三下学期5月考试数学试题试卷含解析_第3页
2025届新疆维吾尔自治区新疆生产建设兵团二中高三下学期5月考试数学试题试卷含解析_第4页
2025届新疆维吾尔自治区新疆生产建设兵团二中高三下学期5月考试数学试题试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届新疆维吾尔自治区新疆生产建设兵团二中高三下学期5月考试数学试题试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知为正项等比数列,是它的前项和,若,且与的等差中项为,则的值是()A.29 B.30 C.31 D.322.在各项均为正数的等比数列中,若,则()A. B.6 C.4 D.53.已知集合,,则集合的真子集的个数是()A.8 B.7 C.4 D.34.已知圆M:x2+y2-2ay=0a>0截直线x+y=0A.内切 B.相交 C.外切 D.相离5.已知,满足条件(为常数),若目标函数的最大值为9,则()A. B. C. D.6.抛物线的焦点为F,点为该抛物线上的动点,若点,则的最小值为()A. B. C. D.7.设,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件8.已知双曲线的右焦点为,过原点的直线与双曲线的左、右两支分别交于两点,延长交右支于点,若,则双曲线的离心率是()A. B. C. D.9.已知,则()A.5 B. C.13 D.10.已知函数在上可导且恒成立,则下列不等式中一定成立的是()A.、B.、C.、D.、11.双曲线C:(,)的离心率是3,焦点到渐近线的距离为,则双曲线C的焦距为()A.3 B. C.6 D.12.函数fxA. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.的展开式中的常数项为_______.14.若曲线(其中常数)在点处的切线的斜率为1,则________.15.函数的定义域是.16.棱长为的正四面体与正三棱锥的底面重合,若由它们构成的多面体的顶点均在一球的球面上,则正三棱锥的内切球半径为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)求不等式的解集;(2)若函数的最大值为,且,求的最小值.18.(12分)已知函数,.(1)求函数的极值;(2)当时,求证:.19.(12分)已知函数.(1)若,求不等式的解集;(2)已知,若对于任意恒成立,求的取值范围.20.(12分)为了加强环保知识的宣传,某学校组织了垃圾分类知识竟赛活动.活动设置了四个箱子,分别写有“厨余垃圾”、“有害垃圾”、“可回收物”、“其它垃圾”;另有卡片若干张,每张卡片上写有一种垃圾的名称.每位参赛选手从所有卡片中随机抽取张,按照自己的判断将每张卡片放入对应的箱子中.按规则,每正确投放一张卡片得分,投放错误得分.比如将写有“废电池”的卡片放入写有“有害垃圾”的箱子,得分,放入其它箱子,得分.从所有参赛选手中随机抽取人,将他们的得分按照、、、、分组,绘成频率分布直方图如图:(1)分别求出所抽取的人中得分落在组和内的人数;(2)从所抽取的人中得分落在组的选手中随机选取名选手,以表示这名选手中得分不超过分的人数,求的分布列和数学期望.21.(12分)2019年是中华人民共和国成立70周年.为了让人民了解建国70周年的风雨历程,某地的民调机构随机选取了该地的100名市民进行调查,将他们的年龄分成6段:,,…,,并绘制了如图所示的频率分布直方图.(1)现从年龄在,,内的人员中按分层抽样的方法抽取8人,再从这8人中随机选取3人进行座谈,用表示年龄在)内的人数,求的分布列和数学期望;(2)若用样本的频率代替概率,用随机抽样的方法从该地抽取20名市民进行调查,其中有名市民的年龄在的概率为.当最大时,求的值.22.(10分)已知椭圆的左,右焦点分别为,,,M是椭圆E上的一个动点,且的面积的最大值为.(1)求椭圆E的标准方程,(2)若,,四边形ABCD内接于椭圆E,,记直线AD,BC的斜率分别为,,求证:为定值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】

设正项等比数列的公比为q,运用等比数列的通项公式和等差数列的性质,求出公比,再由等比数列的求和公式,计算即可得到所求.【详解】设正项等比数列的公比为q,则a4=16q3,a7=16q6,a4与a7的等差中项为,即有a4+a7=,即16q3+16q6,=,解得q=(负值舍去),则有S5===1.故选C.本题考查等比数列的通项和求和公式的运用,同时考查等差数列的性质,考查运算能力,属于中档题.2.D【解析】

由对数运算法则和等比数列的性质计算.【详解】由题意.故选:D.本题考查等比数列的性质,考查对数的运算法则.掌握等比数列的性质是解题关键.3.D【解析】

转化条件得,利用元素个数为n的集合真子集个数为个即可得解.【详解】由题意得,,集合的真子集的个数为个.故选:D.本题考查了集合的化简和运算,考查了集合真子集个数问题,属于基础题.4.B【解析】化简圆M:x2+(y-a)2=a又N(1,1),r5.B【解析】

由目标函数的最大值为9,我们可以画出满足条件件为常数)的可行域,根据目标函数的解析式形式,分析取得最优解的点的坐标,然后根据分析列出一个含参数的方程组,消参后即可得到的取值.【详解】画出,满足的为常数)可行域如下图:由于目标函数的最大值为9,可得直线与直线的交点,使目标函数取得最大值,将,代入得:.故选:.如果约束条件中含有参数,我们可以先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组,代入另一条直线方程,消去,后,即可求出参数的值.6.B【解析】

通过抛物线的定义,转化,要使有最小值,只需最大即可,作出切线方程即可求出比值的最小值.【详解】解:由题意可知,抛物线的准线方程为,,过作垂直直线于,由抛物线的定义可知,连结,当是抛物线的切线时,有最小值,则最大,即最大,就是直线的斜率最大,设在的方程为:,所以,解得:,所以,解得,所以,.故选:.本题考查抛物线的基本性质,直线与抛物线的位置关系,转化思想的应用,属于基础题.7.C【解析】

根据充分条件和必要条件的定义结合对数的运算进行判断即可.【详解】∵a,b∈(1,+∞),∴a>b⇒logab<1,logab<1⇒a>b,∴a>b是logab<1的充分必要条件,故选C.本题主要考查充分条件和必要条件的判断,根据不等式的解法是解决本题的关键.8.D【解析】

设双曲线的左焦点为,连接,,,设,则,,,和中,利用勾股定理计算得到答案.【详解】设双曲线的左焦点为,连接,,,设,则,,,,根据对称性知四边形为矩形,中:,即,解得;中:,即,故,故.故选:.本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力.9.C【解析】

先化简复数,再求,最后求即可.【详解】解:,,故选:C考查复数的运算,是基础题.10.A【解析】

设,利用导数和题设条件,得到,得出函数在R上单调递增,得到,进而变形即可求解.【详解】由题意,设,则,又由,所以,即函数在R上单调递增,则,即,变形可得.故选:A.本题主要考查了利用导数研究函数的单调性及其应用,以及利用单调性比较大小,其中解答中根据题意合理构造新函数,利用新函数的单调性求解是解答的关键,着重考查了构造思想,以及推理与计算能力,属于中档试题.11.A【解析】

根据焦点到渐近线的距离,可得,然后根据,可得结果.【详解】由题可知:双曲线的渐近线方程为取右焦点,一条渐近线则点到的距离为,由所以,则又所以所以焦距为:故选:A本题考查双曲线渐近线方程,以及之间的关系,识记常用的结论:焦点到渐近线的距离为,属基础题.12.A【解析】

由f12=e-14>0排除选项D;【详解】由f12=e-14>0,可排除选项D,f-1=-e本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及x→0二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

写出展开式的通项公式,考虑当的指数为零时,对应的值即为常数项.【详解】的展开式通项公式为:,令,所以,所以常数项为.

故答案为:.本题考查二项展开式中指定项系数的求解,难度较易.解答问题的关键是,能通过展开式通项公式分析常数项对应的取值.14.【解析】

利用导数的几何意义,由解方程即可.【详解】由已知,,所以,解得.故答案为:.本题考查导数的几何意义,考查学生的基本运算能力,是一道基础题.15.【解析】解:因为,故定义域为16.【解析】

由棱长为的正四面体求出外接球的半径,进而求出正三棱锥的高及侧棱长,可得正三棱锥的三条侧棱两两相互垂直,进而求出体积与表面积,设内切圆的半径,由等体积,求出内切圆的半径.【详解】由题意可知:多面体的外接球即正四面体的外接球作面交于,连接,如图则,且为外接球的直径,可得,设三角形的外接圆的半径为,则,解得,设外接球的半径为,则可得,即,解得,设正三棱锥的高为,因为,所以,所以,而,所以正三棱锥的三条侧棱两两相互垂直,所以,设内切球的半径为,,即解得:.故答案为:.本题考查多面体与球的内切和外接问题,考查转化与化归思想,考查空间想象能力、运算求解能力,求解时注意借助几何体的直观图进行分析.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)【解析】

(1)化简得到,分类解不等式得到答案.(2)的最大值,,利用均值不等式计算得到答案.【详解】(1)因为,故或或解得或,故不等式的解集为.(2)画出函数图像,根据图像可知的最大值.因为,所以,当且仅当时,等号成立,故的最小值是3.本题考查了解不等式,均值不等式求最值,意在考查学生的计算能力和转化能力.18.(1)的极小值为,无极大值.(2)见解析.【解析】

(1)对求导,确定函数单调性,得到函数极值.(2)构造函数,证明恒成立,得到,,得证.【详解】(1)由题意知,,令,得,令,得.则在上单调递减,在上单调递增,所以的极小值为,无极大值.(2)当时,要证,即证.令,则,令,得,令,得,则在上单调递减,在上单调递增,所以当时,,所以,即.因为时,,所以当时,,所以当时,不等式成立.本题考查了函数的单调性,极值,不等式的证明,构造函数是解题的关键.19.(1)或;(2).【解析】

(1)时,分类讨论,去掉绝对值,分类讨论解不等式.(2)时,分类讨论去绝对值,得到解析式,由函数的单调性可得的最小值,通过恒成立问题,得到关于的不等式,得到的取值范围.【详解】(1)因为,所以,所以不等式等价于或或,解得或.所以不等式的解集为或.(2)因为,所以,根据函数的单调性可知函数的最小值为,因为恒成立,所以,解得.所以实数的取值范围是.本题考查分类讨论去绝对值,分段函数求最值,不等式恒成立问题,属于中档题.20.(1)所抽取的人中得分落在组和内的人数分别为人、人;(2)分布列见解析,.【解析】

(1)将分别乘以区间、对应的矩形面积可得出结果;(2)由题可知,随机变量的可能取值为、、,利用超几何分布概率公式计算出随机变量在不同取值下的概率,可得出随机变量的分布列,并由此计算出随机变量的数学期望值.【详解】(1)由题意知,所抽取的人中得分落在组的人数有(人),得分落在组的人数有(人).因此,所抽取的人中得分落在组的人数有人,得分落在组的人数有人;(2)由题意可知,随机变量的所有可能取值为、、,,,,所以,随机变量的分布列为:所以,随机变量的期望为.本题考查利用频率分布直方图计算频数,同时也考查了离散型随机变量分布列与数学期望的求解,考查计算能力,属于基础题.21.(1)分布列见解析,(1)【解析】

(1)根据频率分布直方图及抽取总人数,结合各组频率值即可求得各组抽取的人数;的可能取值为0,1,1,由离散型随机变量概率求法即可求得各概率值,即可得分布列;由数学期望公式即可求得其数学期望.(1)先求得年龄在内的频率,视为概率.结合二项分布的性质,表示出,令,化简后可证明其单调性及取得最大值时的值.【详解】(1)按分层抽样的方法拉取的8人中,年龄在的人数为人,年龄在内的人数为人.年龄在内的人数为人.所以的可能取值为0,1,1.所以,,,所以的分市列为011.(1)设在抽取的10名市民中,年龄在内的人数为,服从二项分布.由频率分布直方图可知,年龄在内的频率为,所以,所以.设,若,则,;若,则,.所以当时,最大,即当最大时,.本题考差了离散型随机变量分布列及数学期望的求法,二项分布的综合应用,属于中档题.22.(1)(2)证明见解析【解析】

(1)设椭圆E的半焦距为c,由题意可知,当M为椭圆E的上顶点或下

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论