版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题04绝对值
■小素养目标
1.从数形两方面理解绝对值的意义(代数意义和几何意义);
2.会求已知数的绝对值及已知绝对值求未知数;体会分类讨论思想;
3.运用绝对值的非负性解决问题;
4.能利用绝对值的几何意义求最值,体会数形结合思想.
,_____________\
.目录导航
题型探究
题型1、求已知数的绝对值
题型2、己知绝对值求数或未知数
题型3、绝对值的概念与意义辨析
题型4、绝对值的非负性
题型5、绝对值的化简求值1
题型6、绝对值的化简求值2
题型7、绝对值的实际应用
题型8、绝对值的几何意义求最值PAGEREF_Toc3854\h8
培优精练
A组(能力提升)
B组(培优拓展)
新课轻松学
【思考1】下图中点/与原点之间的距离是多少?点8与原点之间的距离是多少?
试卷第1页,共14页
【思考2】一个数的绝对值与这个数有什么关系?
【历史起源】提起绝对值的起源,就需要从“现代分析学之父”的德国大数学家魏尔斯特拉斯
(他z.ers力ass,1815-1897)说起,他于1841年提出绝对值的定义,距今不到200年的历
史.当然,你可能觉得这个时间已经够久远了吧,但是我可以告诉你,我们所崇拜的欧拉,
生于1707年,逝于1783年,就是说,那个把无穷级数玩得贼溜,写出了数学史上最多论文
的大神,一辈子都没有接触过绝对值.比照这些年份可以看出来,绝对值算是一个出现得非
常晚的数学概念了.
1\
qA知识梳理
1.绝对值
1)绝对值的概念:一般地,数轴上表示数。的点与原点的距离叫做数。的绝对值,记作
H-
2)绝对值的几何意义:一个数。的绝对值就是数轴上表示数。的点与原点的距离.
3)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0
的绝对值是0.
即:(1)如果a>0,那么同=。;(2)如果a=0,那么同=0;(3)如果”0,那么
\a\=-a.
Q(a>0)
(7(tz>0)、।।]a(a〉0)
可整理为:14=0(。=0),或同=-a(a<()y或“(a<0)
-a(Q<0)
4)绝对值具有非负性,取绝对值的结果总是正数或0.即:|«|>0.
3.归纳:①绝对值等于它本身的数是:非负数;②绝对值大于它本身的数是:负数;
③绝对值等于它的相反数的数是:非正数;④绝对值最小的有理数是:_0_;
试卷第2页,共14页
⑤绝对值最小的正整数是:_L;⑥绝对值最小的负整数是:-1.
引入绝对值这个概念,是为以后的数学转化思想做准备,通过绝对值,将负数转化为正数,
这样有理数加法计算问题就可用小学时学的加法进行运算了.
题型探究
题型1、求已知数的绝对值
a(a〉0)
【解题技巧】数轴上表示数。的点与原点的距离叫做数。的绝对值,I4=,om=o).
-a(a<0)
例1.(2024•广西钦州•一模)
1.-2的绝对值是()
1
A.2B.-2C.;D.——
22
例2.(2024•江苏连云港•二模)
2.2024相反数的绝对值是()
A11
BC.2024D.-2024
20242024
例3.(20-21七年级上•浙江杭州•期末)
3.若a<0,则卜2a|=______.
变式1.(2024•湖北武汉•一模)
4.-卜2024|的相反数是()
C11
A.-2024B.2024D.------
20242024
变式2.(2024•西藏•一模)
5.卜3|的绝对值是()
A.3B.-3D.±3
题型2、已知绝对值求数或未知数
【解题技巧】若|x|=a,当。>0时,x=±a;当。=0时,x=0.
根据绝对值的意义,去掉绝对值,转化为两个一元一次方程,解方程即可.
试卷第3页,共14页
例1.(2024•河南郑州•模拟预测)
6.一个数x的相反数的绝对值为3,则这个数是()
A.3B.-3C.|-x|D.±3
例2.(23-24七年级•黑龙江哈尔滨•阶段练习)
7.若卜2$=卜6|,贝口=.
例3.(23-24七年级上•河南郑州•阶段练习)
8.已知|X-5H-3],则x的值为.
变式1.(2024•辽宁•模拟预测)
9.绝对值等于;的数是()
A.--B.-C.,或-工D.以上都不对
3333
变式2.(22-23七年级上•云南昆明•阶段练习)
10.如果同=卜2.5|,贝”=.
变式3.(23-24七年级上•江苏无锡•期中)
11.已知|。一1|=1,则。=.
题型3、绝对值的概念与意义辨析
【解题技巧】绝对值的几何意义:一个数。的绝对值就是数轴上表示数。的点与原点的距
离.
绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝
对值是0.
例1.(2023•福建莆田•七年级统考期末)
12.在数轴上表示任何一个有理数的绝对值的点的位置,只能在数轴上()
A.原点两旁B.任何一点
C.原点右边D.原点或其右边
例2.(23-24七年级上•江苏南京•阶段练习)
13.若。一定是()
A.正数B.负数C.非正数D.非负数
例3.(23-24七年级•黑龙江哈尔滨•阶段练习)
试卷第4页,共14页
14.已知|3_司=3_<7,贝(|,一3|=.
变式1.(2023•河北保定•校考模拟预测)
15.下列说法错误的是()
A.相反数是它本身的数是0B.绝对值是它本身的数是正数
C.0的绝对值是它本身D.有理数的相反数仍是有理数
变式2.(2022秋•甘肃庆阳•七年级统考期中)
16.下列说法正确的是()
A.有理数的绝对值一定比。大
B.有理数的相反数一定比0小
C.如果两个有理数的绝对值相等,那么这两个数相等
D.互为相反数的两个数的绝对值相等
变式3.(2022•河南驻马店•七年级校考期末)
17.如果卜剂=-加,下列小的取值不能使这个式子成立的是()
A.-1B.0C.1D.加取任何负数
题型4、绝对值的非负性
【解题技巧】(1)根据绝对值的非负性“若几个非负数的和为0,则每一个非负数必为0”,
即若问+回=0,则同=0且例=0.(2)|a|>0.
例1.(23-24七年级•浙江•期中)
18.若|3—a|+|6-l|=0,则。=,b=.
例2.(23-24七年级•黑龙江哈尔滨•期中)
19.已知。为有理数,则-2|+4的最小值为.
例1.(23-24七年级上•江苏泰州•阶段练习)
20.已知6、c满足|6T|+c-;=0,则6+c的值是.
变式2.(23-24七年级上•四川眉山•阶段练习)
21.如果x为有理数,式子2021Tx-3|存在最大值,那么这个式子有最—值是—,此
题型5、绝对值的化简求值1
【解题技巧】绝对值化简步骤:①判断绝对值符号里式子的正负;②将绝对值符号改为小
试卷第5页,共14页
括号:若正数,绝对值前的正负号不变(即本身);若负数,绝对值前的正负号改变(即相
反数);③去括号:括号前是“+”,去括号,括号内不变;括号前是“一”,去括号,括号内
各项要变号;④化简.
注意:注意改绝对值符号时与去括号时是否需要变号,且变号的正确性.
例1.(23-24七年级上•四川眉山•阶段练习)
22.若加,〃互为相反数,则|加一1+〃|=;|3-7tI+14-TC|=.
例2.(23-24七年级•上海•期中)
23.若有理数服6、c在数轴上对应的点如图,化简:\a-c\+\b+c\-\a-b\=_.
c0
变式1.(23-24七年级•湖北孝感•阶段练习)
24.若04"1,贝!]+.
变式2.(23-24七年级上•山西忻州•期末)
25.数a,6,c在数轴上对应点的位置如图所示,化简卜4+|b-c|的结果为()
-A」-----j_L»
a0bc
A.-a+b-cB.—ci—bca+b-cD.a-b+c
变式3.(2023•河南•七年级校考阶段练习)
26.有理数。、b、。在数轴上的位置如图:
(1)比较大小(填“>”或"V”号).①。c;②a+b0;③6_c0;
(2)化简:|/>—c|+2|a+Z)|—|c—a|.
题型6、绝对值的化简求值2
aa
【解题技巧】当。>0时,则时=1;当。<0时,则同=T
例1.(23-24七年级上•四川凉山•阶段练习)
27.若孙>0,则®+以+回的值为.
xyxy
变式1.(23-24七年级上•浙江绍兴•阶段练习)
试卷第6页,共14页
A.±1或3B.-1或3C.1或3D.±1或一3
变式2.(22-23七年级上•江西上饶•期中)
29.若仍W0,则@+迎=_______.
ab
题型7、绝对值的实际应用
【解题技巧】常见三种应用:
1)质量问题,绝对值越小,越接近质量标准;
2)小虫爬行问题,判断小虫是否能重回原点,将所有数据相加与0相比较,求距离时是各
数的绝对值,与数的正负性无关;
3)数轴上数的表示问题,点向左移动时,原数减去移动的距离;点向右移动时,原数加上
移动的距离.
例1.(2023•浙江金华•七年级校考期中)
30.小杨同学检测了4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记
为负数,从轻重的角度看,最接近标准质量的是()
——
A.f>'+0.9B.,.-3.6C.f•"-0.3D.£•+2.5
•/•/•Z•/
例2.(23-24七年级上•湖南永州•阶段练习)
31.小虫从某地点0出发在一直线上来回爬行,假定向右爬行的路程记为正,向左爬行的路
程记为负,爬行的路程依次为(单位:厘米)
+5,-3,+10,-8,-6,-9,+12,-10,问:
(1)小虫是否回到原点0?
(2)爬行过程中,如果每爬行1厘米奖励5粒芝麻,则小虫可得到多少粒芝麻?
变式1.(2024•吉林四平•二模)
32.从一批汤圆中挑选4个汤圆编号后进行称重检查,结果如下(超过标准质量的记为正数,
不足的克数记为负数,单位:g),其中最接近标准质量的是()
编号1234
检查结果+0.4-0.1-0.5+0.3
A.1号汤圆B.2号汤圆C.3号汤圆D.4号汤圆
变式2.(23-24七年级上•四川绵阳•期中)
33.科博会期间,出租车司机小李某天上午营运时是在九洲体育馆门口出发,沿东西走向的
试卷第7页,共14页
大街上进行的,如果规定向东为正,向西为负,他这天上午所接送8位乘客的行车里程(单
位:km)如下:—3,+7,—4,+1,—5,—2,+8,—6.
(1)将最后一位乘客送到目的地时,小李在什么位置?
(2)若汽车消耗天然气量为0.2m3/km,这天上午小李接送乘客,出租车共消耗天然气多少立
方米?
(3)若出租车起步价为5元,起步里程为3km(包括3km,超过部分每千米1.2元,问小李这
天上午共得车费多少元?
题型8、绝对值的几何意义求最值
【解题技巧】卜-4几何意义:表示x到点。的距离
(1)找零点(分界点);(2)根据零点将数轴分段;(3)利用“数形结合”思想,求解绝对值
的值(几何法);或者根据分段情况,分析绝对值内式子的正负,去绝对值(代数法).
注:(1)一个式子中有多个绝对值式子时,x前的系数必须相同才可以用该“数形结合”的
方法;(2)分段的时候,切不可遗漏数轴上的点,也不可重复讨论.
例1.(2022•山东济宁•七年级期末)
34.大家知道,|5|=|5-0|,它在数轴上的意义是:表示5的点与原点(即表示0的点)之间
的距离.又如式子|6-3|,它在数轴上的意义是:表示6的点与表示3的点之间的距离.类
似地,式子5)|在数轴上的意义是.
例2.(2022•湖南邵阳•七年级期末)
35.点/、8在数轴上分别表示实数a、b,4、2两点之间的距离记作N8.当/、2两点中
有一点为原点时,不妨设/点在原点.如图所示,则/8=。8=网=k-耳,当/、2两点都
不在原点时:
飞
(1)如图所示,点/、2都在原点的右边,不妨设点/在点2的左侧.则
AB=OB-OA=,-问=6-a=Q-司=卜-b\
OAB
----•-------•---•--->
0ab
(2)如图所示,点4、8都在原点的左边,不妨设点/在点3的右侧.则
试卷第8页,共14页
AB=OB-OA=同一同=-b-[-a)=a-b=\a-b\
BAO
baQ>
(3)如图所示,点N、B分别在原点的两边,不妨设点4在原点的右侧,则
AB=OB+0A=+时=a+(-6)=,一同
BOA
~T>6
回答下列问题:
(1)综上所述,数轴上/、8两点之间的距离.
(2)数轴上表示3和-5的两点N和5之间的距离AB=.
(3)数轴上表示x和-5的两点4和8之间的距离AB=.如果AB=3,则x
的值为.
(4)若代数式上+51+|x-2]有最小值,则最小值为.
变式1.(2023•广西七年级月考)
36.同学们都知道,|3-(-1)|表示3与-1之差的绝对值,实际上也可理解为3与-1两数
在数轴上所对的两点之间的距离.试探索:
(1)求|3-(-1)|=___.
(2)找出所有符合条件的整数x,使得x-3|+|x-(-1)|=4,这样的整数是.
变式2.(2023•江苏南京•七年级校考阶段练习)
37.如果对于某一特定范围内的任意允许值,P=|l-4x|+|l-5x|+|l-6x|+|l-7x|+|l-8%
|的值恒为一常数,则此值为.
变式3.(23-24七年级上•贵州黔南•期末)
38.知识理解:同学们,我们在绝对值一节的学习中知道,一般的,数轴上表示数。的点与
原点的距离叫做数a的绝对值,绝对值符号中含有未知数的方程叫做绝对值方程.像
(1)W=5,(2),-3|=5,(3)|a+2|=6都叫做绝对值方程,对于绝对值方程,我们根据绝对
值的定义求出未知数的值.
例如:
(1)同=,-0|=5表示在数轴上,数a与数0的距离为5个单位长度,所以,。-0=5或
试卷第9页,共14页
。一0=一5,对应的数有两个,分别是5和-5.
解:因为同=5,所以,。=5或a=-5.
(1)卜-3|=5表示在数轴上,数°与数3的距离为5个单位长度,所以,。-3=5或
a-3=-5,对应的数有两个,分别是8和-2.
解:因为|"3|=5,所以,。-3=5或a-3=-5,解得:a=8或a=-2.
知识应用:
(1)求出下列未知数的值.
0|o-6|=2;
②|a+7|=3.
(2)知识探究:
直接写出|"3|+|a-5]的最小值.
■培优精练
A组(能力提升)
(2024•广西南宁•二模)
39.2024的绝对值是()
(23-24七年级上•贵州贵阳•阶段练习)
40.1.如图所示,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数
记为负数,从轻重的角度看,最接近标准质量的是()
(22-23七年级下•上海闵行•阶段练习)
41.如果|金=。,那么。的取值范围是()
A.正数B.负数C.非负数D.非正数
试卷第10页,共14页
(23-24七年级•上海普陀•期中)
42.如果一个数的绝对值等于它本身,那么这个数是()
A.1B.0C.正数D.非负数
(23-24七年级上•浙江绍兴•阶段练习)
43.相反数与绝对值相等的数是()
A.非正数B.非负数C.正数D.负数
(23-24九年级下•江苏南京•阶段练习)
44.如图,将实数八b表示在数轴上,则下列等式成立的是()
0
A.\a\=aB.|^|=-bC.\b-a\=b-aD.\a+b\=a+b
(2023・重庆七年级期中)
45.下列命题正确的是()
A.绝对值等于本身的数是正数
B.绝对值等于相反数的数是负数
C.互为相反数的两个数的绝对值相等
D.绝对值相等的两个数互为相反数
(2023春•吉林长春•七年级校考阶段练习)
46.若|4-a卜”4,则a的值可以是()
A.5B.3C.1D.-1
⑵-24八年级上•江苏徐州•阶段练习)
47.绝对值小于7的所有整数有个.
(23-24七年级上•山东青岛•阶段练习)
48.a是最大的负整数,且a、b、c满足|a+b|+|c-5|=0.那么a=,b=
(23-24七年级上•山东济宁•期末)
49.实数。,6在数轴上的位置如图,^\\a-b\-\a+b\=
------1----------1------------------1---->
a0b
(23-24七年级上•山东滨州•期末)
试卷第11页,共14页
50.若自+1=4,则x的值为
(23-24七年级上•广东佛山•期中)
51.如图,直径为1个单位的圆片上有一点A与数轴上的原点重合,N8是圆片的直径.圆
片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情
况记录如下:+2,-1,+3,-4,-3,运动结束后A运动的路程共有.(保留无)
(23-24七年级上•广东深圳•期中)
52.出租车司机李师傅某日上午8:00-9:20一直在某市区一条东西方向的公路上营运,共
连续运载八批乘客.若规定向东为正,向西为负(单位:千米)
+8,—6,+3—4,+8,—4+4,—3.
(1)李师傅位于第一批乘客出发地的什么方向?距离多少千米?
(2)这时间段李师傅开车的平均速度是多少千米每小时?
B组(培优拓展)
(23-24七年级下•黑龙江绥化•阶段练习)
53.。为有理数,若问=-。,那么。是()
A.非正数B.非负数C.负数D.不为0的数
(2023秋•云南文山•七年级统考期末)
54.若x是一个有理数,且-3cx<1,则|x—l|+|x+3]=()
A.2x+2B.—2x—2C.4D.-2
(2023秋•黑龙江佳木斯•七年级校考期末)
55.若|。|=网,则。和b的关系为()
A.。和6相等B.。和6互为相反数
C.。和6相等或互为相反数D.以上答案都不对
(2024•江苏南京•七年级校考阶段练习)
56.若加是有理数,则同+加的值()
A.是负数B.是非负数C.必是正数D.无法确定
试卷第12页,共14页
(23-24七年级上•江苏徐州•阶段练习)
3同2b
57.已知。、6为有理数,ab^O且M=a+\b\当。、6取不同的值时,Af的值等于
()
A.±5B.0或±1C.0或±5D.±1或±5
(2024七年级•广东•培优)
58.使|“+3|=同+3成立的条件是(
A.。为任意数B.a彳0C.a<0D.a>0
(23-24七年级上•河北石家庄•阶段练习)
59.当机=时,|机+1卜2的值最小.
(23-24七年级上•四川达州•期中)
60.若a、b、c是整数,且|。+可+|b+c|=l,贝!!|a-c|=.
(23-24七年级•北京海淀•期中)
61.有理数a,b,c在数轴上的位置如图所示.
IlII11A
-2bc02a
(1)用“>”"V”或填空:
a+b0,…0,6+20.
(2)化简:|a+6|+2|c—a|—|Z)+2|.
(23-24七年级上•山东淄博•阶段练习)
62.阅读下列材料:我们知道恸的几何意义是数轴上数x的对应点与原点之间的距离,即
国=归-0],也可以说,恸表示数轴上数X与数0对应点之间的距离.这个结论可以推广为
年-马|表示数轴上数xi与数对对应点之间的距离.
例1:已知国=2,求x的值.
解:在数轴上与原点距离为2的点表示的数为-2和2,
所以x的值为-2或2.
例2:已知卜-[=2,求x的值.
解:在数轴上与1对应的点的距离为2的点表示的数为3和-1,
试卷第13页,共14页
所以X的值为3或-1.
仿照材料中的解法,求下列各式中x的值.
⑴国=3;
⑵卜-2|=4.
(23-24七年级上•新疆•期中)
63.数轴上两点之间的距离等于相应两数差的绝对值,如2与3的距离可表示为|2-3|=1,
2与-3的距离可表示为
⑴数轴上表示3和8的两点之间的距离是—;数轴上表示-3和-9的两点之间的距离
是;
(2)数轴上表示x和-2的两点/和8之间的距离是—;如果|AB|=4,贝I]x为—;
(3)数“、b、c在数轴上对应的位置如图所示,化简|a+c|-|c+6|+|a-6].
(4)当代数式|x+l|+|x-2|+卜-3|取最小值时,x的值为—.
(2023•浙江•七年级专题练习)
64.问题提出:学习了同为数轴上表示。的点到原点的距离之后,小凡所在数学兴趣小组对
数轴上分别表示数a和数b的两个点aB之间的距离进行了探究:
(1)利用数轴可知5与1两点之间距离是;一般的,数轴上表示数m和数n的两点
之间距离为.
问题探究:(2)请求出|x-3|+|x-5|的最小值.
问题解决:(3)如图在十四运的场地建设中有一条直线主干道乙£旁依次有3处防疫物资
放置点4B,C,己知/3=800米,8c=1200米,现在设计在主干道/旁修建防疫物资配
发点P,问尸建在直线工上的何处时,才能使得配发点尸到三处放置点路程之和最短?最
短路程是多少?
ABC
试卷第14页,共14页
1.A
【分析】本题考查了求一个数的绝对值,根据负数的绝对值等于它的相反数,进行作答即
可.
【详解】解:-2的绝对值是-(-2)=2,
故选:A.
2.C
【分析】本题考查了相反数与绝对值,先求出2024的相反数,再求出相反数的绝对值即可,
熟练掌握相反数的定义是解此题的关键.
【详解】解:2024的相反数为-2024,-2024的绝对值为2024,
2024相反数的绝对值是2024,
故选:C.
3.—2a
【详解】本题考查了不等式的性质与绝对值的意义,解题的关键是熟知:①在不等式的两
边同时乘以一个负数,不等号的方向改变;②正数的绝对值是其本身.
根据不等式的性质与绝对值的意义进行变形与化简即可.
解:
-2a>0,
.,J-2Q|=-2Q.
故答案为:-2a.
4.B
【分析】本题主要考查了绝对值的意义和相反数,根据绝对值的意义化简绝对值,再根据相
反数的定义求相反数即可.
【详解】解:-|-2024|=-2024,
-2024的相反数是2024.
故选:B.
5.A
【分析】本题主要考查绝对值的定义,掌握一个正数的绝对值是它本身,一个负数的绝对值
是它的相反数,0的绝对值是0成为解题的关键.
根据绝对值的定义即可解得.
答案第1页,共22页
【详解】解:卜3|的绝对值是3.
故选A.
6.D
【分析】本题考查相反数,绝对值,根据相反数和绝对值的定义即可求解.
【详解】••・一个数x的相反数的绝对值为3,即H=3,
—x=±3,
x=±3.
故选:D.
7.3或-3
【分析】本题考查了绝对值的意义,正确熟练掌握知识点是解题的关键.
直接取绝对值即可.
【详解】解:卜2$=卜6|
|2x|=6
国=3
・•・x=3或-3.
故答案为:3或-3.
8.8或2##2或8
【分析】本题考查了绝对值方程,根据绝对值等于一个正数的数有2个求解即可.
【详解】解:fx-5|=|-3|,
|x-51=3,
x—5=3%—5=-3,
=8或2.
故答案为:8或2.
9.C
【分析】本题考查了绝对值.熟练掌握绝对值是解题的关键.
根据绝对值的定义求解即可.
【详解】解:由题意知,绝对值等于;的数是:或-g,
故选:C.
答案第2页,共22页
10.±2.5
【分析】本题考查了互为相反数的两个数的绝对值相等.就是简单的运算题,比较简单.根
据互为相反数的两个数的绝对值相等,由题意知国=2.5,得出x的值.
【详解】解:小月-2.5|,
.".|x|=2.5,
得出x=±2.5,
故答案为:±2.5.
11.2或0##0或2
【分析】本题考查绝对值方程,解题的关键是熟记绝对值的意义.
根据绝对值的意义即可求解.
【详解】v|a-l|=l
二a—1=1a—1=-1
a=2或0.
故答案为:2或0.
12.D
【分析】根据数轴的特点及绝对值的定义解答即可.
【详解】解:••・任何非。数的绝对值都大于0,
任何非0数的绝对值所表示的数总在原点的右侧,
•••0的绝对值是0,
••.0的绝对值表示的数在原点.
故选:D.
【点睛】本题考查的是绝对值及数轴的定义,解答此题的关键是熟知以下知识:(1)数轴上
原点右边表示的数都大于0,原点左边表示的数都小于0;(2)一个正数的绝对值是它本身,
一个负数的绝对值是它的相反数,0的绝对值是0.
13.C
【分析】本题考查了绝对值.根据非正数的绝对值等于他的相反数,可得答案.
【详解】解:;非正数的绝对值等于他的相反数,\a\=~a,
一定是非正数,
答案第3页,共22页
故选:c.
14.3—Q##—Q+3
【分析】本题考查绝对值的代数意义,由题意确定3-。的符号,由绝对值的代数意义化简
即可得到答案,熟记绝对值的代数意义是解决问题的关键.
【详解】解:|3-4=3-a,
3-aNO,贝U。-3W0,
|t7—3|=—^£7_3j=3-6Z,
故答案为:3-tz.
15.B
【分析】依次判断各个说法即可进行解答.
【详解】解:绝对值是它本身的数是非负数(0和正数),故B错误.
故选:B.
【点睛】本题主要考查了相反数和绝对值的相关知识,解题的关键是熟记相关知识点.
16.D
【分析】直接利用绝对值的性质以及相反数的定义分别分析得出答案.
【详解】解:A、有理数的绝对值一定大于等于0,故原说法错误,不符合题意;
B、正有理数的相反数一定比0小,故原说法错误,不符合题意;
C、如果两个数的绝对值相等,那么这两个数互为相反数或相等,故原说法错误,不符合题
忌--A*.;
D、互为相反数的两个数的绝对值相等,故此选项正确,符合题意.
故选:D.
【点睛】本题主要考查了绝对值和相反数,正确掌握相关定义是解题关键.
17.C
【分析】根据绝对值的非负性判断即可.
【详解】解:;卜同=一加,
-m>0,即aV0,
m不可能为正数,
故选:C.
【点睛】本题考查了绝对值的非负性,熟练掌握知识点是解题的关键.
答案第4页,共22页
18.31
【分析】本题考查了绝对值的非负性;根据非负数的性质可得3-。=0,6-1=0,即可求
解.
【详解】因为|3—Q|+|6—1|=0,^|3-4/|>0,|^-1|>0,
所以3—。=0,6—1=0,所以3,b=\.
故答案为:3,1.
19.4
【分析】本题考查了绝对值的非负性,解题的关键是掌握正数的绝对值是它本身,负数的绝
对值是它的相反数,0的绝对值是0.根据绝对值的非负性即可解答.
【详解】解:•."2性0,
|«-2|+4>4,
;.卜_2|+4的最小值为4,
故答案为:4.
31
20.-##1-##1.5
22
【分析】本题考查了绝对值的性质,根据l|+c-g=0,得到6=l,c=3,
代入计算即可.
【详解】•.•|fe-l|+c-1=0,
:.b7=1l,c=—1,
2
:.b7+c=।1+—1=—3,
22
故答案为:;3或1或1.5.
22
21.大20213
【分析】本题考查了绝对值的非负性,熟练掌握若。为有理数,则有同之0是解答本题的关
键.根据绝对值的非负性求解即可.
【详解】v|x-3|>0,
.•.当x=3时,卜-3|的最小值为0,
答案第5页,共22页
2021-|x-3|的最大值为2021,此时x=3.
故答案为:大;2021;3.
22.11
【分析】本题考查了相反数的性质,化简绝对值;根据相反数的性质可得到机+"=0,再代
入帆-1+〃|中即可求解;根据3〈兀<4,化简绝对值,即可求解.
【详解】解:•••加,〃互为相反数,
/.m+H=0,
:.\m-l+n\=1,
3<7i<4,
・•・|3—兀|+|4-711=71-3+4-71=1,
故答案为:1,1.
23.2c
【分析】本题考查了利用数轴判断式子的正负、化简绝对值,由数轴得出
|c|<H<|«|,从而得出a-c<0,b+c>0,a-b<0,再根据绝对值的性质化简绝对值即可
得出答案,采用数形结合的思想是解此题的关键.
【详解】解:由数轴可得:a<c<0<b,H<H<|«|,
:.a-c<0,b+c>0,a-b<0,
:.\a-c\+\b+c\-\a-b\=c-a+b+c+a-b=2c,
故答案为:2c.
24.1
【分析】本题考查绝对值的化简,先根据题意确定然后化简绝对值即可求解.
【详解】解:;04a<1,
'1•u—1<0,
|t7|+1{7—l|=a+l—a=l,
故答案为:1.
25.B
【分析】此题考查了运用数轴上的点表示实数和绝对值化简的应用能力,关键是能准确理解
并运用以上知识进行变形、求解.运用数轴上的点表示实数和绝对值的性质进行化简、计
答案第6页,共22页
算.
先确定4c的符合以及大小,然后再取绝对值即可.
【详解】解:由题意得,a<O<b<c,:.-a>Q,b-c<Q,
二卜=—a-(b—c)=-a—b+c,
故选:B.
26.(1)<;<;<
⑵-a-3b
【分析】本题考查了有关实数与数轴的简单应用,做题关键要掌握实数的大小比较,去绝对
值.
(1)根据数轴上的点表示的数的特点,比较大小.
(2)利用绝对值的定义去绝对值,去括号,合并同类项.
【详解】(1)解:由数轴可得:a<0,Q<b<c,且网
a<c;a+b<0;b—c<0;
(2)解:0-+2,+@-=-6+c+2(-a-6)-c+a=—b+c—2a—2b—c+a=—a—3b.
故答案为:-a-3b
27.3或-1
【分析】本题考查了绝对值的化简,根据已知可得x,>同为正数或同为负数,分两种情况
进行求解即可.
【详解】解:因为孙>0,所以x,y同为正数或同为负数.
当x>0,了>。时,M+M+M=1+1+1=3;
xyxy
当x<0,"。时,忖+雪网=.
xyxy
所以原式的值为3或-1,
故答案为:3或-1.
28.B
【分析】本题考查的绝对值的应用,以及化简求值.根据gH0,即a、b全为正数时,或
a、6为一正一负时,或a、6全负时分类讨论计算即可.
【详解】解:..,。>片0,
答案第7页,共22页
「•设〃〉0,6〉0时,
abab
-----1------1-------=1+1+1=3
|a||b||ab\
a>0,b<0或。<0,b〉0时,
abab<,<,abab,,,
/.——+——+-----=1-1-1=-1成1~r+1~\+1—\=11+1-1=T,
|a||b||ab\“同\b\\ab\
a<0,b<0时,
abab,,,
/.——+——+-----=-l-l+l=-l
|a|\b\\ab\
ababC
综上可得:-----1------1-------=3—i
\a\|6|\ab\
故选:B.
29.-2或0或2
【分析】本题主要考查了化简绝对值,有理数的除法计算,讨论。、b的符号,然后化简绝
对值即可得到答案.
【详解】解:当”、b同时为正时,忖+例=q+2=1+1=2,
abab
当a、b同时为负时,^+^=-+—=-l-l=-2,
abab
当a、6一正一负时,不妨设a为负,M+W=W+2=_I+I=O,
abab
综上所述,忖+@的值为-2或0或2.
ab
故答案为:-2或0或2.
30.C
【分析】比较各个足球克数的绝对值,绝对值最小的足球最接近标准,从而得出结论.
【详解】解:因为|+0.9|=0.9,卜3.6|=3.6,卜0.3|=0.3,|+2.5|=2.5,
由于卜0.3|最小,所以从轻重的角度看,最接近标准工件的是C.
故选:C.
【点睛】本题考查了正负数在生活中的应用,理解从轻重的角度看,绝对值最小的物品最接
近标准是解决本题的关键.
31.(1)小虫没有回到原点
(2)小虫可得到315粒芝麻
答案第8页,共22页
【分析】本题考查了正负数的应用:
(1)利用有理数的加法,即可求解;
(2)利用加法先求出总距离,再乘以每爬行1厘米奖励5粒芝麻即可求解;
熟练掌握正负数的意义是解题的关键.
【详解】(1)解:+5+(-3)+10+(-8)+(-6)+(-9)+12+(-10)
=27-36
=-9,
答:小虫没有回到原点.
(2)|+5|+|-3|+|+10|+1-8|+1-6|+|-9|+|+12|+|-10|
=5+3+10+8+6+9+12+10
=63,
63x5=315(粒),
答:小虫可得到315粒芝麻.
32.B
【分析】本题考查了正数负数、绝对值的意义,根据绝对值越小的数最接近标准质量,进行
作答即可.
【详解】解:依题意,|+0.4|=0.4,|-0.1|=0.1,|-0.5|=0.5,|+0.3|=0.3,
,•,0.5>0.4>0.3>0.1,
其中最接近标准质量的是2号汤圆,
故选:B.
33.(1)小李在九洲体育馆门口西边4km处;
(2)7.2立方米;
(3)58元.
【分析】本题考查了正负数的意义,有理数的加减混合运算,有理数的乘法运算;
(1)求出这几个数的和,根据符号、绝对值判断位置;
(2)求出所有数的绝对值的和,即行驶的总路程,进而求出用气量;
(3)八名顾客均有起步价,再求出超出3km的加价即可求出总车费.
【详解】(1)由-3+7-4+1-5-2+8-6=-4,
答案第9页,共22页
・••小李在九洲体育馆门口西边4km处;
(2)由卜3|+1+7|+1-4|+1+1|+|-5|+1-2|+1+8|+1-6|=36(km),
•••共消耗天然气36x0.2=7.2(立方米),
答:共消耗天然气7.2立方米;
(3)5x8+1.2x[0+(7-3)+(4-3)+0+(5-3)+0+(8-3)+(6-3)]
=40+1.2x15,
=40+1.2x15,
=58(元),
答:小李这天上午共得车费58元.
34.表示。的点与表示-5的点之间的距离
【分析】利用绝对值的意义即可求解.
【详解】解:因为忖=|5-0],它在数轴上的意义是:表示5的点与原点(即表示0的点)之
间的距离,式子|6-3],它在数轴上的意义是:表示6的点与表示3的点之间的距离,
所以式子在数轴上的意义是表示a的点与表示-5的点之间的距离.
【点睛】本题考查了绝对值,掌握绝对值的意义是解题的关键.
35.(\)AB=\a-lj\
⑵8
(3)|x+5|,x=-2或-8
⑷7
【分析】(1)根据数轴上8两点的位置即可得出答案;
(2)按照数轴上的位置进行计算即可;
(3)根据数轴进行计算,列方程解绝对值方程即可;
(4)根据绝对值的性质进行化简即可.
【详解】(1)解:综上所述,数轴上两点/和8之间的距离/8=|。-耳;
故答案为:\a-b\-,
(2)解:数轴上表示3和-5的两点/和2之间的距离九=3-(-5)=3+5=8;
答案第10页,共22页
故答案为:8;
(3)解:数轴上表示x和-5的两点4和5之间的距离45=卜+5],
如果/5=3,
|x+5|=3,
••・x+5=3或%+5=-3,
解得x=—2或1二一8,
则》的值为-2或-8;
故答案为|x+5];一2或-8;
(4)解若代数式|x+5|+|x-2]有最小值,|x+5|+|x-2|的值即为一5与2两点间的距离,此时
最小,最小值为|2-(-5)|=7,则最小值为7.
故答案为7.
【点睛】本题考查了实数与数轴,以及绝对值,绝对值方程,熟练掌握各自的性质是解本题
的关键.
36.4-1,0,1,2,3
【分析】(1)由题意可知|3-(-1)|等于3与-1之差的绝对值;
(2)利用数轴上某点到3所对应的点的距离和到-1所对应的点的距离之和为4,然后根据
数轴可写出满足条件的整数X.
【详解】解:(1)|3-(-1)|=4;
(2)式子,-3|+|x-(-1)|=4可理解为:在数轴上,某点到3所对应的点的距离和到-1
所对应的点的距离之和为4,
所以满足条件的整数x可为-1,0,1,2,3.
故答案为4;-1,0,1,2,3.
【点睛】本题考查的是数轴上两点之间的距离,即数轴上两点之间的距离等于两点所表示数
的差的绝对值.
37.1
【分析】因为尸=|1-4x|+|l-5x|+|l-6x|+|l-7x|+|l-8x|的值恒为一常数,即P的值与x
无关,因此化简后不含x项,根据绝对值的意义化简得出答案.
【详解】尸=1l-4x|+|l-5x|+|l-6x|+|l-7x|+|l-8x|的值恒为一常数,
答案第11页,共22页
••.P的值与X无关,
-4x-5x-6x+7x+8x=0,
4x>0且1-5x>0且1—6x>0且1-7x<0且1-8%<0,
11
一<x<一,
76
/.P=|1-4x|+11-5x|+11-6x|+11-7x|+11-8x|
=1—4x+1—5x+1—6x+7x—1+8x—1
=1.
故答案为:1.
【点睛】此题考查绝对值的意义和计算方法,理解并掌握绝对值的意义和计算结果为常数的
意义是解此题的关键.
38.⑴①a=8或。=4;②。=-4或。=-10;(2)2.
【分析】本题考查了数轴上的点所表示的数、绝对值的含义、数轴上两点间的距离等基础知
识,明确相关概念是解题的关键.
(1)①|。-6|=2表示在数轴上,数。与数6的距离为2个单位长度,所以,。-6=2或
a-6=-2,对应的数有两个,分别是8和4;
②|a+7|=3表示在数轴上,数。与数-7的距离为3个单位长度,所以,。+7=3或
fl+7=-3,对应的数有两个,分别是-4和-10.
(2)根据-3|+|。-5|表示数a与表示数3和5的点之间的距离之和,当表示数。的点处于
表示3和5的点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 上海市县(2024年-2025年小学五年级语文)统编版随堂测试((上下)学期)试卷及答案
- 高二英语上册Unit13教案
- 卫星寻星仪产业规划专项研究报告
- 分光镜产业规划专项研究报告
- 动态心电监测仪产业深度调研及未来发展现状趋势
- 商业地产外墙涂料施工实施方案
- 排球产业行业营销策略方案
- 工业用电磁炉产业深度调研及未来发展现状趋势
- 市政道路施工安全隐患排查方案
- 商业地产园林设计方案
- 树消防意识 创平安校园课件
- 病毒学-流感病毒的变异与预防策略教学教案
- 砂石资源专项整治工作措施
- 医院食堂经营方案写
- 锅炉煤粉细度
- 干部履历表(中共中央组织部2015年制)
- 《防治校园霸凌》课件
- 小学各年级小学一年级提高思维能力的方法主题班会
- SOAP病历冠心病介绍
- 《深化运用监督执纪“第一种形态”实施细则(试行)》测试题【附答案】
- 宣传栏安装施工方案
评论
0/150
提交评论