版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省尤溪县第七中学2024-2025学年高三第一次综合测试数学试题试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,定义集合,则等于()A. B.C. D.2.已知命题若,则,则下列说法正确的是()A.命题是真命题B.命题的逆命题是真命题C.命题的否命题是“若,则”D.命题的逆否命题是“若,则”3.已知双曲线的右焦点为F,过右顶点A且与x轴垂直的直线交双曲线的一条渐近线于M点,MF的中点恰好在双曲线C上,则C的离心率为()A. B. C. D.4.已知正方体的棱长为2,点为棱的中点,则平面截该正方体的内切球所得截面面积为()A. B. C. D.5.我国古代数学著作《九章算术》中有如下问题:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升(注:一斗为十升).问,米几何?”下图是解决该问题的程序框图,执行该程序框图,若输出的S=15(单位:升),则输入的k的值为() A.45 B.60 C.75 D.1006.设全集,集合,则=()A. B. C. D.7.如图是一个几何体的三视图,则这个几何体的体积为()A. B. C. D.8.设x、y、z是空间中不同的直线或平面,对下列四种情形:①x、y、z均为直线;②x、y是直线,z是平面;③z是直线,x、y是平面;④x、y、z均为平面.其中使“且”为真命题的是()A.③④ B.①③ C.②③ D.①②9.设正项等比数列的前n项和为,若,,则公比()A. B.4 C. D.210.已知,则()A. B. C. D.11.平行四边形中,已知,,点、分别满足,,且,则向量在上的投影为()A.2 B. C. D.12.已知直线:与椭圆交于、两点,与圆:交于、两点.若存在,使得,则椭圆的离心率的取值范围为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某校名学生参加军事冬令营活动,活动期间各自扮演一名角色进行分组游戏,角色按级别从小到大共种,分别为士兵、排长、连长、营长、团长、旅长、师长、军长和司令.游戏分组有两种方式,可以人一组或者人一组.如果人一组,则必须角色相同;如果人一组,则人角色相同或者人为级别连续的个不同角色.已知这名学生扮演的角色有名士兵和名司令,其余角色各人,现在新加入名学生,将这名学生分成组进行游戏,则新加入的学生可以扮演的角色的种数为________.14.设复数满足,则_________.15.设集合,,则____________.16.在数列中,,则数列的通项公式_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示,三棱柱中,平面,点,分别在线段,上,且,,是线段的中点.(Ⅰ)求证:平面;(Ⅱ)若,,,求直线与平面所成角的正弦值.18.(12分)已知函数,.(1)当时,讨论函数的零点个数;(2)若在上单调递增,且求c的最大值.19.(12分)甲、乙两班各派三名同学参加知识竞赛,每人回答一个问题,答对得10分,答错得0分,假设甲班三名同学答对的概率都是,乙班三名同学答对的概率分别是,,,且这六名同学答题正确与否相互之间没有影响.(1)记“甲、乙两班总得分之和是60分”为事件,求事件发生的概率;(2)用表示甲班总得分,求随机变量的概率分布和数学期望.20.(12分)某商场举行优惠促销活动,顾客仅可以从以下两种优惠方案中选择一种.方案一:每满100元减20元;方案二:满100元可抽奖一次.具体规则是从装有2个红球、2个白球的箱子随机取出3个球(逐个有放回地抽取),所得结果和享受的优惠如下表:(注:所有小球仅颜色有区别)红球个数3210实际付款7折8折9折原价(1)该商场某顾客购物金额超过100元,若该顾客选择方案二,求该顾客获得7折或8折优惠的概率;(2)若某顾客购物金额为180元,选择哪种方案更划算?21.(12分)在某外国语学校举行的(高中生数学建模大赛)中,参与大赛的女生与男生人数之比为,且成绩分布在,分数在以上(含)的同学获奖.按女生、男生用分层抽样的方法抽取人的成绩作为样本,得到成绩的频率分布直方图如图所示.(Ⅰ)求的值,并计算所抽取样本的平均值(同一组中的数据用该组区间的中点值作代表);(Ⅱ)填写下面的列联表,并判断在犯错误的概率不超过的前提下能否认为“获奖与女生、男生有关”.女生男生总计获奖不获奖总计附表及公式:其中,.22.(10分)如图,四棱锥中,底面为直角梯形,∥,为等边三角形,平面底面,为的中点.(1)求证:平面平面;(2)点在线段上,且,求平面与平面所成的锐二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
根据定义,求出,即可求出结论.【详解】因为集合,所以,则,所以.故选:C.本题考查集合的新定义运算,理解新定义是解题的关键,属于基础题.2.B【解析】
解不等式,可判断A选项的正误;写出原命题的逆命题并判断其真假,可判断B选项的正误;利用原命题与否命题、逆否命题的关系可判断C、D选项的正误.综合可得出结论.【详解】解不等式,解得,则命题为假命题,A选项错误;命题的逆命题是“若,则”,该命题为真命题,B选项正确;命题的否命题是“若,则”,C选项错误;命题的逆否命题是“若,则”,D选项错误.故选:B.本题考查四种命题的关系,考查推理能力,属于基础题.3.A【解析】
设,则MF的中点坐标为,代入双曲线的方程可得的关系,再转化成关于的齐次方程,求出的值,即可得答案.【详解】双曲线的右顶点为,右焦点为,M所在直线为,不妨设,∴MF的中点坐标为.代入方程可得,∴,∴,∴(负值舍去).故选:A.本题考查双曲线的离心率,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意构造的齐次方程.4.A【解析】
根据球的特点可知截面是一个圆,根据等体积法计算出球心到平面的距离,由此求解出截面圆的半径,从而截面面积可求.【详解】如图所示:设内切球球心为,到平面的距离为,截面圆的半径为,因为内切球的半径等于正方体棱长的一半,所以球的半径为,又因为,所以,又因为,所以,所以,所以截面圆的半径,所以截面圆的面积为.故选:A.本题考查正方体的内切球的特点以及球的截面面积的计算,难度一般.任何一个平面去截球,得到的截面一定是圆面,截面圆的半径可通过球的半径以及球心到截面的距离去计算.5.B【解析】
根据程序框图中程序的功能,可以列方程计算.【详解】由题意,.故选:B.本题考查程序框图,读懂程序的功能是解题关键.6.A【解析】
先求得全集包含的元素,由此求得集合的补集.【详解】由解得,故,所以,故选A.本小题主要考查补集的概念及运算,考查一元二次不等式的解法,属于基础题.7.A【解析】
由三视图还原原几何体如图,该几何体为组合体,上半部分为半球,下半部分为圆柱,半球的半径为1,圆柱的底面半径为1,高为1.再由球与圆柱体积公式求解.【详解】由三视图还原原几何体如图,该几何体为组合体,上半部分为半球,下半部分为圆柱,半球的半径为1,圆柱的底面半径为1,高为1.则几何体的体积为.故选:.本题主要考查由三视图求面积、体积,关键是由三视图还原原几何体,意在考查学生对这些知识的理解掌握水平.8.C【解析】
①举反例,如直线x、y、z位于正方体的三条共点棱时②用垂直于同一平面的两直线平行判断.③用垂直于同一直线的两平面平行判断.④举例,如x、y、z位于正方体的三个共点侧面时.【详解】①当直线x、y、z位于正方体的三条共点棱时,不正确;②因为垂直于同一平面的两直线平行,正确;③因为垂直于同一直线的两平面平行,正确;④如x、y、z位于正方体的三个共点侧面时,不正确.故选:C.此题考查立体几何中线面关系,选择题一般可通过特殊值法进行排除,属于简单题目.9.D【解析】
由得,又,两式相除即可解出.【详解】解:由得,又,∴,∴,或,又正项等比数列得,∴,故选:D.本题主要考查等比数列的性质的应用,属于基础题.10.B【解析】
利用诱导公式以及同角三角函数基本关系式化简求解即可.【详解】,本题正确选项:本题考查诱导公式的应用,同角三角函数基本关系式的应用,考查计算能力.11.C【解析】
将用向量和表示,代入可求出,再利用投影公式可得答案.【详解】解:,得,则向量在上的投影为.故选:C.本题考查向量的几何意义,考查向量的线性运算,将用向量和表示是关键,是基础题.12.A【解析】
由题意可知直线过定点即为圆心,由此得到坐标的关系,再根据点差法得到直线的斜率与坐标的关系,由此化简并求解出离心率的取值范围.【详解】设,且线过定点即为的圆心,因为,所以,又因为,所以,所以,所以,所以,所以,所以,所以.故选:A.本题考查椭圆与圆的综合应用,着重考查了椭圆离心率求解以及点差法的运用,难度一般.通过运用点差法达到“设而不求”的目的,大大简化运算.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
对新加入的学生所扮演的角色进行分类讨论,分析各种情况下个学生所扮演的角色的分组,综合可得出结论.【详解】依题意,名学生分成组,则一定是个人组和个人组.①若新加入的学生是士兵,则可以将这个人分组如下;名士兵;士兵、排长、连长各名;营长、团长、旅长各名;师长、军长、司令各名;名司令.所以新加入的学生可以是士兵,由对称性可知也可以是司令;②若新加入的学生是排长,则可以将这个人分组如下:名士兵;连长、营长、团长各名;旅长、师长、军长各名;名司令;名排长.所以新加入的学生可以是排长,由对称性可知也可以是军长;③若新加入的学生是连长,则可以将这个人分组如下:名士兵;士兵、排长、连长各名;连长、营长、团长各名;旅长、师长、军长各名;名司令.所以新加入的学生可以是连长,由对称性可知也可以是师长;④若新加入的学生是营长,则可以将这个人分组如下:名士兵;排长、连长、营长各名;营长、团长、旅长各名;师长、军长、司令各名;名司令.所以新加入的学生可以是营长,由对称性可知也可以是旅长;⑤若新加入的学生是团长,则可以将这个人分组如下:名士兵;排长、连长、营长各名;旅长、师长、军长各名;名司令;名团长.所以新加入的学生可以是团长.综上所述,新加入学生可以扮演种角色.故答案为:.本题考查分类计数原理的应用,解答的关键就是对新加入的学生所扮演的角色进行分类讨论,属于中等题.14..【解析】
利用复数的运算法则首先可得出,再根据共轭复数的概念可得结果.【详解】∵复数满足,∴,∴,故而可得,故答案为.本题考查了复数的运算法则,共轭复数的概念,属于基础题.15.【解析】
先解不等式,再求交集的定义求解即可.【详解】由题,因为,解得,即,则,故答案为:本题考查集合的交集运算,考查解一元二次不等式.16.【解析】
由题意可得,又,数列的奇数项为首项为1,公差为2的等差数列,对分奇数和偶数两种情况,分别求出,从而得到数列的通项公式.【详解】解:∵,∴①,②,①﹣②得:,又∵,∴数列的奇数项为首项为1,公差为2的等差数列,∴当为奇数时,,当为偶数时,则为奇数,∴,∴数列的通项公式,故答案为:.本题考查求数列的通项公式,解题关键是由已知递推关系得出,从而确定数列的奇数项成等差数列,求出通项公式后再由已知求出偶数项,要注意结果是分段函数形式.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(Ⅰ)证明见详解;(Ⅱ).【解析】
(Ⅰ)取中点为,根据几何关系,求证四边形为平行四边形,即可由线线平行推证线面平行;(Ⅱ)以为坐标原点,建立空间直角坐标系,求得直线的方向向量和平面的法向量,即可求得线面角的正弦值.【详解】(Ⅰ)取的中点,连接,.如下图所示:因为,分别是线段和的中点,所以是梯形的中位线,所以.又,所以.因为,,所以四边形为平行四边形,所以.所以,.所以四边形为平行四边形,所以.又平面,平面,所以平面.(Ⅱ)因为,且平面,故可以为原点,的方向为轴正方向建立如图所示的空间直角坐标系,如下图所示:不妨设,则,所以,,,,.所以,,.设平面的法向量为,则所以可取.设直线与平面所成的角为,则.故可得直线与平面所成的角的正弦值为.本题考查由线线平行推证线面平行,以及用向量法求解线面角,属综合中档题.18.(1)见解析(2)2【解析】
(1)将代入可得,令,则,设,则转化问题为与的交点问题,利用导函数判断的图象,即可求解;(2)由题可得在上恒成立,设,利用导函数可得,则,即,再设,利用导函数求得的最小值,则,进而求解.【详解】(1)当时,,定义域为,由可得,令,则,由,得;由,得,所以在上单调递增,在上单调递减,则的最大值为,且当时,;当时,,由此作出函数的大致图象,如图所示.由图可知,当时,直线和函数的图象有两个交点,即函数有两个零点;当或,即或时,直线和函数的图象有一个交点,即函数有一个零点;当即时,直线与函数的象没有交点,即函数无零点.(2)因为在上单调递增,即在上恒成立,设,则,①若,则,则在上单调递减,显然,在上不恒成立;②若,则,在上单调递减,当时,,故,单调递减,不符合题意;③若,当时,,单调递减,当时,,单调递增,所以,由,得,设,则,当时,,单调递减;当时,,单调递增,所以,所以,又,所以,即c的最大值为2.本题考查利用导函数研究函数的零点问题,考查利用导函数求最值,考查运算能力与分类讨论思想.19.(1)(2)分布列见解析,期望为20【解析】
利用相互独立事件概率公式求解即可;由题意知,随机变量可能的取值为0,10,20,30,分别求出对应的概率,列出分布列并代入数学期望公式求解即可.【详解】(1)由相互独立事件概率公式可得,(2)由题意知,随机变量可能的取值为0,10,20,30.,,,,所以,的概率分布列为0102030所以数学期望.本题考查相互独立事件概率公式和离散型随机变量的分布列及其数学期望;考查运算求解能力;确定随机变量可能的取值,求出对应的概率是求解本题的关键;属于中档题、常考题型.20.(1)(2)选择方案二更为划算【解析】
(1)计算顾客获得7折优惠的概率,获得8折优惠的概率,相加得到答案.(2)选择方案二,记付款金额为元,则可取的值为126,144,162,180.,计算概率得到数学期望,比较大小得到答案.【详解】(1)该顾客获得7折优惠的概率,该顾客获得8折优惠的概率,故该顾客获
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 超高性能混凝土生产购销条款
- 车辆安全保证书模板样本
- 进度监控保证协议
- 遵守校规从我做起
- 郑州地理一模解析版深度解读地理特征
- 酒店家具采购合同培训资料
- 采购废石合同的签订经验分享
- 钢材招标文件要求
- 金鱼照看服务合同
- 铝型材购销合同格式范文
- 农村劳动力情况调查表(抽样)
- (2024年)中华人民共和国环境保护法全
- (2024年)电子商务模式之B2B模式
- JTGT J23-2008 公路桥梁加固施工技术规范
- 弘扬宪法精神建设法制校园
- 国家保密知识培训课件
- 大学生职业规划大赛生涯发展
- 单病种质量控制管理
- 教师职业道德与教育法规全套教学课件
- 超星尔雅学习通《创新思维训练(中山大学)》2024章节测试含答案
- 计算机专业大学生职业生涯规划 (修改)
评论
0/150
提交评论