![2024届江苏省兴化市顾庄学区中考适应性考试数学试题含解析_第1页](http://file4.renrendoc.com/view8/M02/17/1D/wKhkGWbT1OSAD3aSAAHEWMX9RXU097.jpg)
![2024届江苏省兴化市顾庄学区中考适应性考试数学试题含解析_第2页](http://file4.renrendoc.com/view8/M02/17/1D/wKhkGWbT1OSAD3aSAAHEWMX9RXU0972.jpg)
![2024届江苏省兴化市顾庄学区中考适应性考试数学试题含解析_第3页](http://file4.renrendoc.com/view8/M02/17/1D/wKhkGWbT1OSAD3aSAAHEWMX9RXU0973.jpg)
![2024届江苏省兴化市顾庄学区中考适应性考试数学试题含解析_第4页](http://file4.renrendoc.com/view8/M02/17/1D/wKhkGWbT1OSAD3aSAAHEWMX9RXU0974.jpg)
![2024届江苏省兴化市顾庄学区中考适应性考试数学试题含解析_第5页](http://file4.renrendoc.com/view8/M02/17/1D/wKhkGWbT1OSAD3aSAAHEWMX9RXU0975.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省兴化市顾庄学区中考适应性考试数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下面四个几何体中,左视图是四边形的几何体共有()A.1个 B.2个 C.3个 D.4个2.如图,在中,点D为AC边上一点,则CD的长为()A.1 B. C.2 D.3.下列计算中,错误的是()A.; B.; C.; D..4.在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣2,1) B.(﹣8,4)C.(﹣8,4)或(8,﹣4) D.(﹣2,1)或(2,﹣1)5.(2016福建省莆田市)如图,OP是∠AOB的平分线,点C,D分别在角的两边OA,OB上,添加下列条件,不能判定△POC≌△POD的选项是()A.PC⊥OA,PD⊥OB B.OC=OD C.∠OPC=∠OPD D.PC=PD6.1﹣的相反数是()A.1﹣ B.﹣1 C. D.﹣17.一个几何体的俯视图如图所示,其中的数字表示该位置上小正方体的个数,那么这个几何体的主视图是()A. B. C. D.8.若代数式的值为零,则实数x的值为()A.x=0 B.x≠0 C.x=3 D.x≠39.如图是棋盘的一部分,建立适当的平面直角坐标系,已知棋子“车”的坐标为(-2,1),棋子“马”的坐标为(3,-1),则棋子“炮”的坐标为()A.(1,1) B.(2,1) C.(2,2) D.(3,1)10.点P(1,﹣2)关于y轴对称的点的坐标是()A.(1,2) B.(﹣1,2) C.(﹣1,﹣2) D.(﹣2,1)11.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm,将线段DC沿CB方向平移7cm得到线段EF,点E、F分别落在边AB、BC上,则△EBF的周长是()cm.A.7 B.11 C.13 D.1612.如图,在平面直角坐标系中,△ABC与△A1B1C1是以点P为位似中心的位似图形,且顶点都在格点上,则点P的坐标为()A.(﹣4,﹣3) B.(﹣3,﹣4) C.(﹣3,﹣3) D.(﹣4,﹣4)二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,若∠1+∠2=180°,∠3=110°,则∠4=.14.已知反比例函数,在其图象所在的每个象限内,的值随的值增大而减小,那么它的图象所在的象限是第__________象限.15.已知ab=﹣2,a﹣b=3,则a3b﹣2a2b2+ab3的值为_______.16.一个样本为1,3,2,2,a,b,c,已知这个样本的众数为3,平均数为2,则这组数据的中位数为______.17.从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小、形状完全相同)中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是__________.18.已知一个多边形的每一个外角都等于,则这个多边形的边数是.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某市旅游景区有A,B,C,D,E等著名景点,该市旅游部门统计绘制出2018年春节期间旅游情况统计图(如图),根据图中信息解答下列问题:(1)2018年春节期间,该市A,B,C,D,E这五个景点共接待游客万人,扇形统计图中E景点所对应的圆心角的度数是,并补全条形统计图.(2)甲,乙两个旅行团在A,B,D三个景点中随机选择一个,这两个旅行团选中同一景点的概率是.20.(6分)已知边长为2a的正方形ABCD,对角线AC、BD交于点Q,对于平面内的点P与正方形ABCD,给出如下定义:如果,则称点P为正方形ABCD的“关联点”.在平面直角坐标系xOy中,若A(﹣1,1),B(﹣1,﹣1),C(1,﹣1),D(1,1).(1)在,,中,正方形ABCD的“关联点”有_____;(2)已知点E的横坐标是m,若点E在直线上,并且E是正方形ABCD的“关联点”,求m的取值范围;(3)若将正方形ABCD沿x轴平移,设该正方形对角线交点Q的横坐标是n,直线与x轴、y轴分别相交于M、N两点.如果线段MN上的每一个点都是正方形ABCD的“关联点”,求n的取值范围.21.(6分)计算:|﹣2|+8+(2017﹣π)0﹣4cos45°22.(8分)如图,四边形ABCD的外接圆为⊙O,AD是⊙O的直径,过点B作⊙O的切线,交DA的延长线于点E,连接BD,且∠E=∠DBC.(1)求证:DB平分∠ADC;(2)若EB=10,CD=9,tan∠ABE=,求⊙O的半径.23.(8分)某校为了解学生对篮球、足球、排球、羽毛球、乒乓球这五种球类运动的喜爱情况,随机抽取一部分学生进行问卷调查,统计整理并绘制了以下两幅不完整的统计图:请根据以上统计图提供的信息,解答下列问题:(1)共抽取名学生进行问卷调查;(2)补全条形统计图,求出扇形统计图中“足球”所对应的圆心角的度数;(3)该校共有3000名学生,请估计全校学生喜欢足球运动的人数.(4)甲乙两名学生各选一项球类运动,请求出甲乙两人选同一项球类运动的概率.24.(10分)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.若∠ABC=70°,则∠NMA的度数是度.若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.25.(10分)某校为了解本校九年级男生体育测试中跳绳成绩的情况,随机抽取该校九年级若干名男生,调查他们的跳绳成绩(次/分),按成绩分成,,,,五个等级.将所得数据绘制成如下统计图.根据图中信息,解答下列问题:该校被抽取的男生跳绳成绩频数分布直方图(1)本次调查中,男生的跳绳成绩的中位数在________等级;(2)若该校九年级共有男生400人,估计该校九年级男生跳绳成绩是等级的人数.26.(12分)均衡化验收以来,乐陵每个学校都高楼林立,校园环境美如画,软件、硬件等设施齐全,小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M处出发,向前走6米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°,已如A点离地面的高度AB=4米,∠BCA=30°,且B、C、D三点在同一直线上.(1)求树DE的高度;(2)求食堂MN的高度.27.(12分)6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型ABABO人数105(1)这次随机抽取的献血者人数为人,m=;补全上表中的数据;若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】简单几何体的三视图.【分析】左视图是从左边看到的图形,因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体2个.故选B.2、C【解析】
根据∠DBC=∠A,∠C=∠C,判定△BCD∽△ACB,根据相似三角形对应边的比相等得到代入求值即可.【详解】∵∠DBC=∠A,∠C=∠C,∴△BCD∽△ACB,∴∴∴CD=2.故选:C.【点睛】主要考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.3、B【解析】分析:根据零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义作答即可.详解:A.,故A正确;B.,故B错误;C..故C正确;D.,故D正确;故选B.点睛:本题考查了零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义,需熟练掌握且区分清楚,才不容易出错.4、D【解析】
根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,即可求得答案.【详解】∵点A(-4,2),B(-6,-4),以原点O为位似中心,相似比为,把△ABO缩小,∴点A的对应点A′的坐标是:(-2,1)或(2,-1).故选D.【点睛】此题考查了位似图形与坐标的关系.此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标比等于±k.5、D【解析】试题分析:对于A,由PC⊥OA,PD⊥OB得出∠PCO=∠PDO=90°,根据AAS判定定理可以判定△POC≌△POD;对于BOC=OD,根据SAS判定定理可以判定△POC≌△POD;对于C,∠OPC=∠OPD,根据ASA判定定理可以判定△POC≌△POD;,对于D,PC=PD,无法判定△POC≌△POD,故选D.考点:角平分线的性质;全等三角形的判定.6、B【解析】
根据相反数的的定义解答即可.【详解】根据a的相反数为-a即可得,1﹣的相反数是﹣1.故选B.【点睛】本题考查了相反数的定义,熟知相反数的定义是解决问题的关键.7、A【解析】
一一对应即可.【详解】最左边有一个,中间有两个,最右边有三个,所以选A.【点睛】理解立体几何的概念是解题的关键.8、A【解析】
根据分子为零,且分母不为零解答即可.【详解】解:∵代数式的值为零,∴x=0,此时分母x-3≠0,符合题意.故选A.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为0,②分母的值不为0,这两个条件缺一不可.9、B【解析】
直接利用已知点坐标建立平面直角坐标系进而得出答案.【详解】解:根据棋子“车”的坐标为(-2,1),建立如下平面直角坐标系:∴棋子“炮”的坐标为(2,1),故答案为:B.【点睛】本题考查了坐标确定位置,正确建立平面直角坐标系是解题的关键.10、C【解析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P(1,﹣2)关于y轴对称的点的坐标是(﹣1,﹣2),故选C.【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键.关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.11、C【解析】
直接利用平移的性质得出EF=DC=4cm,进而得出BE=EF=4cm,进而求出答案.【详解】∵将线段DC沿着CB的方向平移7cm得到线段EF,∴EF=DC=4cm,FC=7cm,∵AB=AC,BC=12cm,∴∠B=∠C,BF=5cm,∴∠B=∠BFE,∴BE=EF=4cm,∴△EBF的周长为:4+4+5=13(cm).故选C.【点睛】此题主要考查了平移的性质,根据题意得出BE的长是解题关键.12、A【解析】
延长A1A、B1B和C1C,从而得到P点位置,从而可得到P点坐标.【详解】如图,点P的坐标为(-4,-3).
故选A.【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、110°.【解析】
解:∵∠1+∠2=180°,∴a∥b,∴∠3=∠4,又∵∠3=110°,∴∠4=110°.故答案为110°.14、【解析】
直接利用反比例函数的增减性进而得出图象的分布.【详解】∵反比例函数y(k≠0),在其图象所在的每个象限内,y的值随x的值增大而减小,∴它的图象所在的象限是第一、三象限.故答案为:一、三.【点睛】本题考查了反比例的性质,正确掌握反比例函数图象的分布规律是解题的关键.15、﹣18【解析】
要求代数式a3b﹣2a2b2+ab3的值,而代数式a3b﹣2a2b2+ab3恰好可以分解为两个已知条件ab,(a﹣b)的乘积,因此可以运用整体的数学思想来解答.【详解】a3b﹣2a2b2+ab3=ab(a2﹣2ab+b2)=ab(a﹣b)2,当a﹣b=3,ab=﹣2时,原式=﹣2×32=﹣18,故答案为:﹣18.【点睛】本题考查了因式分解在代数式求值中的应用,熟练掌握因式分解的方法以及运用整体的数学思想是解题的关键.16、1.【解析】解:因为众数为3,可设a=3,b=3,c未知,平均数=(1+3+1+1+3+3+c)÷7=1,解得c=0,将这组数据按从小到大的顺序排列:0、1、1、1、3、3、3,位于最中间的一个数是1,所以中位数是1,故答案为:1.点睛:本题为统计题,考查平均数、众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.17、1【解析】
根据概率的公式进行计算即可.【详解】从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是15故答案为:15【点睛】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.18、5【解析】
∵多边形的每个外角都等于72°,∵多边形的外角和为360°,∴360°÷72°=5,∴这个多边形的边数为5.故答案为5.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)50,43.2°,补图见解析;(2).【解析】
(1)由A景点的人数以及百分比进行计算即可得到该市周边景点共接待游客数;再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;根据B景点接待游客数补全条形统计图;
(2)根据甲、乙两个旅行团在A、B、D三个景点中各选择一个景点,画出树状图,根据概率公式进行计算,即可得到同时选择去同一景点的概率.【详解】解:(1)该市景点共接待游客数为:15÷30%=50(万人),
E景点所对应的圆心角的度数是:B景点人数为:50×24%=12(万人),
补全条形统计图如下:
故答案是:50,43.2o.
(2)画树状图可得:
∵共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,
∴同时选择去同一个景点的概率=.20、(1)正方形ABCD的“关联点”为P2,P3;(2)或;(3).【解析】
(1)正方形ABCD的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),由此画出图形即可判断;(2)因为E是正方形ABCD的“关联点”,所以E在正方形ABCD的内切圆和外接圆之间(包括两个圆上的点),因为E在直线上,推出点E在线段FG上,求出点F、G的横坐标,再根据对称性即可解决问题;(3)因为线段MN上的每一个点都是正方形ABCD的“关联点”,分两种情形:①如图3中,MN与小⊙Q相切于点F,求出此时点Q的横坐标;②M如图4中,落在大⊙Q上,求出点Q的横坐标即可解决问题;【详解】(1)由题意正方形ABCD的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),观察图象可知:正方形ABCD的“关联点”为P2,P3;(2)作正方形ABCD的内切圆和外接圆,∴OF=1,,.∵E是正方形ABCD的“关联点”,∴E在正方形ABCD的内切圆和外接圆之间(包括两个圆上的点),∵点E在直线上,∴点E在线段FG上.分别作FF’⊥x轴,GG’⊥x轴,∵OF=1,,∴,.∴.根据对称性,可以得出.∴或.(3)∵、N(0,1),∴,ON=1.∴∠OMN=60°.∵线段MN上的每一个点都是正方形ABCD的“关联点”,①MN与小⊙Q相切于点F,如图3中,∵QF=1,∠OMN=60°,∴.∵,∴.∴.②M落在大⊙Q上,如图4中,∵,,∴.∴.综上:.【点睛】本题考查一次函数综合题、正方形的性质、直线与圆的位置关系等知识,解题的关键是理解题意,学会寻找特殊位置解决数学问题,属于中考压轴题.21、1.【解析】
直接利用零指数幂的性质以及特殊角的三角函数值和绝对值的性质分别化简得出答案.【详解】解:原式=2+22+1﹣4×2=2+22+1﹣22=1.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.22、(1)详见解析;(2)OA=.【解析】
(1)连接OB,证明∠ABE=∠ADB,可得∠ABE=∠BDC,则∠ADB=∠BDC;
(2)证明△AEB∽△CBD,AB=x,则BD=2x,可求出AB,则答案可求出.【详解】(1)证明:连接OB,∵BE为⊙O的切线,∴OB⊥BE,∴∠OBE=90°,∴∠ABE+∠OBA=90°,∵OA=OB,∴∠OBA=∠OAB,∴∠ABE+∠OAB=90°,∵AD是⊙O的直径,∴∠OAB+∠ADB=90°,∴∠ABE=∠ADB,∵四边形ABCD的外接圆为⊙O,∴∠EAB=∠C,∵∠E=∠DBC,∴∠ABE=∠BDC,∴∠ADB=∠BDC,即DB平分∠ADC;(2)解:∵tan∠ABE=,∴设AB=x,则BD=2x,∴,∵∠BAE=∠C,∠ABE=∠BDC,∴△AEB∽△CBD,∴,∴,解得x=3,∴AB=x=15,∴OA=.【点睛】本题考查切线的性质、解直角三角形、勾股定理等知识,解题的关键是学会添加常用辅助线解决问题.23、(1)1;(2)详见解析;(3)750;(4).【解析】
(1)用排球的人数÷排球所占的百分比,即可求出抽取学生的人数;(2)足球人数=学生总人数-篮球的人数-排球人数-羽毛球人数-乒乓球人数,即可补全条形统计图;(3)计算足球的百分比,根据样本估计总体,即可解答;(4)利用概率公式计算即可.【详解】(1)30÷15%=1(人).答:共抽取1名学生进行问卷调查;故答案为1.(2)足球的人数为:1﹣60﹣30﹣24﹣36=50(人),“足球球”所对应的圆心角的度数为360°×0.25=90°.如图所示:(3)3000×0.25=750(人).答:全校学生喜欢足球运动的人数为750人.(4)画树状图为:(用A、B、C、D、E分别表示篮球、足球、排球、羽毛球、乒乓球的五张卡片)共有25种等可能的结果数,选同一项目的结果数为5,所以甲乙两人中有且选同一项目的概率P(A)=.【点睛】本题主要考查了条形统计图,扇形统计图以及用样本估计总体的应用,解题时注意:从扇形图上可以清楚地看出各部分数量和总数量之间的关系.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.24、(1)50;(2)①6;②1【解析】试题分析:(1)根据等腰三角形的性质和线段垂直平分线的性质即可得到结论;(2)①根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AM=BM,然后求出△MBC的周长=AC+BC,再代入数据进行计算即可得解;②当点P与M重合时,△PBC周长的值最小,于是得到结论.试题解析:解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°.∵AB的垂直平分线交AB于点N,∴∠ANM=90°,∴∠NMA=50°.故答案为50;(2)①∵MN是AB的垂直平分线,∴AM=BM,∴△MBC的周长=BM+CM+BC=AM+CM+BC=AC+BC.∵AB=8,△MBC的周长是1,∴BC=1﹣8=6;②当点P与M重合时,△PBC周长的值最小,理由:∵PB+PC=PA+PC,PA+PC≥AC,∴P与M重合时,PA+PC=AC,此时PB+PC最小,∴△PBC周长的最小值=AC+BC=8+6=1.25、(1)C;(2)100【解析】
(1)根据中位数的定义即可作出判断;(2)先算出样本中C等级的百分比,再用总数乘以400即可.【详解】解:(1)由直方图中可知数据总数为40个,第20,21个数据的平均数为本组数据的中位数,第20,21个数据的等级都是C等级,故本次调查中,男生的跳绳成绩的中位数在C等级;故答案为C.(2)400=100(人)答:估计该校九年级男生跳绳成绩是等级的人数有100人.【点睛】本题考查了中位数的求法和用样本数估计总体数据,理解相关知识是解题的关键.26、(1)12米;(2)(2+8)米【解析】
(1)设DE=x,先证明△ACE是直角三角形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《欧尚世博推广方案》课件
- 二零二五年度门窗安装行业品牌推广与营销合同
- 别饿坏了那匹马课件
- 二零二五年度农家乐特色民宿经营许可合同模板
- 《手术室护理安全》课件
- 《动名词的用法》课件
- 《错中求解加减法》课件
- 全球人力资源管理的趋势
- 《麻醉性镇痛药》课件
- 二零二五年度健身房租赁合同及会员服务条款
- 北京市房山区2024-2025学年七年级上学期期末英语试题(含答案)
- 安全生产事故调查与案例分析(第3版)课件 吕淑然 第5、6章 事故案例评析、相关法律法规
- 2025年南阳科技职业学院高职单招数学历年(2016-2024)频考点试题含答案解析
- 加油站复工复产方案
- 2025-2030年中国增韧剂(MBS高胶粉)行业发展现状及前景趋势分析报告
- 2025年高考物理复习新题速递之万有引力与宇宙航行(2024年9月)
- 2025年首都机场集团公司招聘笔试参考题库含答案解析
- 2025云南省贵金属新材料控股集团限公司面向高校毕业生专项招聘144人高频重点提升(共500题)附带答案详解
- 苏州市区2024-2025学年五年级上学期数学期末试题一(有答案)
- 暑期预习高一生物必修二知识点
- (高清版)DB43∕T 1147-2015 太阳能果蔬烘干机
评论
0/150
提交评论