




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届吉林省长春市九台市师范高级中学高三下学期期末教学质量监测数学试题文试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.2019年末,武汉出现新型冠状病毒肺炎()疫情,并快速席卷我国其他地区,传播速度很快.因这种病毒是以前从未在人体中发现的冠状病毒新毒株,所以目前没有特异治疗方法,防控难度很大.武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从2月7日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和与确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人.在排查期间,一户6口之家被确认为“与确诊患者的密切接触者”,这种情况下医护人员要对其家庭成员随机地逐一进行“核糖核酸”检测,若出现阳性,则该家庭为“感染高危户”.设该家庭每个成员检测呈阳性的概率均为()且相互独立,该家庭至少检测了5个人才能确定为“感染高危户”的概率为,当时,最大,则()A. B. C. D.2.已知,,,则,,的大小关系为()A. B. C. D.3.设集合、是全集的两个子集,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.定义在R上的函数满足,为的导函数,已知的图象如图所示,若两个正数满足,的取值范围是()A. B. C. D.5.已知函数,若关于的方程有4个不同的实数根,则实数的取值范围为()A. B. C. D.6.用一个平面去截正方体,则截面不可能是()A.正三角形 B.正方形 C.正五边形 D.正六边形7.设,,,则()A. B. C. D.8.某部队在一次军演中要先后执行六项不同的任务,要求是:任务A必须排在前三项执行,且执行任务A之后需立即执行任务E,任务B、任务C不能相邻,则不同的执行方案共有()A.36种 B.44种 C.48种 D.54种9.已知集合,则=A. B. C. D.10.执行如图所示的程序框图后,输出的值为5,则的取值范围是().A. B. C. D.11.中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“乐”不排在第一节,“射”和“御”两门课程不相邻,则“六艺”课程讲座不同的排课顺序共有()种.A.408 B.120 C.156 D.24012.在中,,,,为的外心,若,,,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知为双曲线:的左焦点,直线经过点,若点,关于直线对称,则双曲线的离心率为__________.14.已知点是抛物线上动点,是抛物线的焦点,点的坐标为,则的最小值为______________.15.的展开式中的常数项为__________.16.的展开式中二项式系数最大的项的系数为_________(用数字作答).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数的导函数的两个零点为和.(1)求的单调区间;(2)若的极小值为,求在区间上的最大值.18.(12分)为践行“绿水青山就是金山银山”的发展理念和提高生态环境的保护意识,高二年级准备成立一个环境保护兴趣小组.该年级理科班有男生400人,女生200人;文科班有男生100人,女生300人.现按男、女用分层抽样从理科生中抽取6人,按男、女分层抽样从文科生中抽取4人,组成环境保护兴趣小组,再从这10人的兴趣小组中抽出4人参加学校的环保知识竞赛.(1)设事件为“选出的这4个人中要求有两个男生两个女生,而且这两个男生必须文、理科生都有”,求事件发生的概率;(2)用表示抽取的4人中文科女生的人数,求的分布列和数学期望.19.(12分)已知函数,.(1)当为何值时,轴为曲线的切线;(2)用表示、中的最大值,设函数,当时,讨论零点的个数.20.(12分)已知;.(1)若为真命题,求实数的取值范围;(2)若为真命题且为假命题,求实数的取值范围.21.(12分)已知椭圆经过点,离心率为.(1)求椭圆的方程;(2)过点的直线交椭圆于、两点,若,在线段上取点,使,求证:点在定直线上.22.(10分)如图,为坐标原点,点为抛物线的焦点,且抛物线上点处的切线与圆相切于点(1)当直线的方程为时,求抛物线的方程;(2)当正数变化时,记分别为的面积,求的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】
根据题意分别求出事件A:检测5个人确定为“感染高危户”发生的概率和事件B:检测6个人确定为“感染高危户”发生的概率,即可得出的表达式,再根据基本不等式即可求出.【详解】设事件A:检测5个人确定为“感染高危户”,事件B:检测6个人确定为“感染高危户”,∴,.即设,则∴当且仅当即时取等号,即.故选:A.本题主要考查概率的计算,涉及相互独立事件同时发生的概率公式的应用,互斥事件概率加法公式的应用,以及基本不等式的应用,解题关键是对题意的理解和事件的分解,意在考查学生的数学运算能力和数学建模能力,属于较难题.2.D【解析】
构造函数,利用导数求得的单调区间,由此判断出的大小关系.【详解】依题意,得,,.令,所以.所以函数在上单调递增,在上单调递减.所以,且,即,所以.故选:D.本小题主要考查利用导数求函数的单调区间,考查化归与转化的数学思想方法,考查对数式比较大小,属于中档题.3.C【解析】
作出韦恩图,数形结合,即可得出结论.【详解】如图所示,,同时.故选:C.本题考查集合关系及充要条件,注意数形结合方法的应用,属于基础题.4.C【解析】
先从函数单调性判断的取值范围,再通过题中所给的是正数这一条件和常用不等式方法来确定的取值范围.【详解】由的图象知函数在区间单调递增,而,故由可知.故,又有,综上得的取值范围是.故选:C本题考查了函数单调性和不等式的基础知识,属于中档题.5.C【解析】
求导,先求出在单增,在单减,且知设,则方程有4个不同的实数根等价于方程在上有两个不同的实数根,再利用一元二次方程根的分布条件列不等式组求解可得.【详解】依题意,,令,解得,,故当时,,当,,且,故方程在上有两个不同的实数根,故,解得.故选:C.本题考查确定函数零点或方程根个数.其方法:(1)构造法:构造函数(易求,可解),转化为确定的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出的图象草图,数形结合求解;(2)定理法:先用零点存在性定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值符号,进而判断函数在该区间上零点的个数.6.C【解析】试题分析:画出截面图形如图显然A正三角形,B正方形:D正六边形,可以画出五边形但不是正五边形;故选C.考点:平面的基本性质及推论.7.A【解析】
先利用换底公式将对数都化为以2为底,利用对数函数单调性可比较,再由中间值1可得三者的大小关系.【详解】,,,因此,故选:A.本题主要考查了利用对数函数和指数函数的单调性比较大小,属于基础题.8.B【解析】
分三种情况,任务A排在第一位时,E排在第二位;任务A排在第二位时,E排在第三位;任务A排在第三位时,E排在第四位,结合任务B和C不能相邻,分别求出三种情况的排列方法,即可得到答案.【详解】六项不同的任务分别为A、B、C、D、E、F,如果任务A排在第一位时,E排在第二位,剩下四个位置,先排好D、F,再在D、F之间的3个空位中插入B、C,此时共有排列方法:;如果任务A排在第二位时,E排在第三位,则B,C可能分别在A、E的两侧,排列方法有,可能都在A、E的右侧,排列方法有;如果任务A排在第三位时,E排在第四位,则B,C分别在A、E的两侧;所以不同的执行方案共有种.本题考查了排列组合问题,考查了学生的逻辑推理能力,属于中档题.9.C【解析】
本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.【详解】由题意得,,则.故选C.不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.10.C【解析】
框图的功能是求等比数列的和,直到和不满足给定的值时,退出循环,输出n.【详解】第一次循环:;第二次循环:;第三次循环:;第四次循环:;此时满足输出结果,故.故选:C.本题考查程序框图的应用,建议数据比较小时,可以一步一步的书写,防止错误,是一道容易题.11.A【解析】
利用间接法求解,首先对6门课程全排列,减去“乐”排在第一节的情况,再减去“射”和“御”两门课程相邻的情况,最后还需加上“乐”排在第一节,且“射”和“御”两门课程相邻的情况;【详解】解:根据题意,首先不做任何考虑直接全排列则有(种),当“乐”排在第一节有(种),当“射”和“御”两门课程相邻时有(种),当“乐”排在第一节,且“射”和“御”两门课程相邻时有(种),则满足“乐”不排在第一节,“射”和“御”两门课程不相邻的排法有(种),故选:.本题考查排列、组合的应用,注意“乐”的排列对“射”和“御”两门课程相邻的影响,属于中档题.12.B【解析】
首先根据题中条件和三角形中几何关系求出,,即可求出的值.【详解】如图所示过做三角形三边的垂线,垂足分别为,,,过分别做,的平行线,,由题知,则外接圆半径,因为,所以,又因为,所以,,由题可知,所以,,所以.故选:D.本题主要考查了三角形外心的性质,正弦定理,平面向量分解定理,属于一般题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
由点,关于直线对称,得到直线的斜率,再根据直线过点,可求出直线方程,又,中点在直线上,代入直线的方程,化简整理,即可求出结果.【详解】因为为双曲线:的左焦点,所以,又点,关于直线对称,,所以可得直线的方程为,又,中点在直线上,所以,整理得,又,所以,故,解得,因为,所以.故答案为本题主要考查双曲线的简单性质,先由两点对称,求出直线斜率,再由焦点坐标求出直线方程,根据中点在直线上,即可求出结果,属于常考题型.14.【解析】
过点作垂直于准线,为垂足,则由抛物线的定义可得,则,为锐角.故当和抛物线相切时,的值最小.再利用直线的斜率公式、导数的几何意义求得切点的坐标,从而求得的最小值.【详解】解:由题意可得,抛物线的焦点,准线方程为,过点作垂直于准线,为垂足,则由抛物线的定义可得,则,为锐角.故当最小时,的值最小.设切点,由的导数为,则的斜率为,求得,可得,,,.故答案为:.本题考查抛物线的定义,性质的简单应用,直线的斜率公式,导数的几何意义,属于中档题.15.31【解析】
由二项式定理及其展开式得通项公式得:因为的展开式得通项为,则的展开式中的常数项为:,得解.【详解】解:,则的展开式中的常数项为:.故答案为:31.本题考查二项式定理及其展开式的通项公式,求某项的导数,考查计算能力.16.5670【解析】
根据二项式展开的通项,可得二项式系数的最大项,可求得其系数.【详解】二项展开式一共有项,所以由二项式系数的性质可知二项式系数最大的项为第5项,系数为.故答案为:5670本题考查了二项式定理展开式的应用,由通项公式求二项式系数,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)单调递增区间是,单调递减区间是和;(2)最大值是.【解析】
(1)求得,由题意可知和是函数的两个零点,根据函数的符号变化可得出的符号变化,进而可得出函数的单调递增区间和递减区间;(2)由(1)中的结论知,函数的极小值为,进而得出,解出、、的值,然后利用导数可求得函数在区间上的最大值.【详解】(1),令,因为,所以的零点就是的零点,且与符号相同.又因为,所以当时,,即;当或时,,即.所以,函数的单调递增区间是,单调递减区间是和;(2)由(1)知,是的极小值点,所以有,解得,,,所以.因为函数的单调递增区间是,单调递减区间是和.所以为函数的极大值,故在区间上的最大值取和中的最大者,而,所以函数在区间上的最大值是.本题考查利用导数求函数的单调区间与最值,考查计算能力,属于中等题.18.(1);(2)见解析【解析】
(1)按分层抽样得抽取了理科男生4人,女生2人,文科男生1人,女生3人,再利用古典概型求解即可(2)由超几何分布求解即可【详解】(1)因为学生总数为1000人,该年级分文、理科按男女用分层抽样抽取10人,则抽取了理科男生4人,女生2人,文科男生1人,女生3人.所以.(2)的可能取值为0,1,2,3,,,,,的分布列为0123.本题考查分层抽样,考查超几何分布及期望,考查运算求解能力,是基础题19.(1);(2)见解析.【解析】
(1)设切点坐标为,然后根据可解得实数的值;(2)令,,然后对实数进行分类讨论,结合和的符号来确定函数的零点个数.【详解】(1),,设曲线与轴相切于点,则,即,解得.所以,当时,轴为曲线的切线;(2)令,,则,,由,得.当时,,此时,函数为增函数;当时,,此时,函数为减函数.,.①当,即当时,函数有一个零点;②当,即当时,函数有两个零点;③当,即当时,函数有三个零点;④当,即当时,函数有两个零点;⑤当,即当时,函数只有一个零点.综上所述,当或时,函数只有一个零点;当或时,函数有两个零点;当时,函数有三个零点.本题考查了利用导数的几何意义研究切线方程和利用导数研究函数的单调性与极值,关键是分类讨论思想的应用,属难题.20.(1)(2)或【解析】
(1)根据为真命题列出不等式,进而求得实数的取值范围;(2)应用复合命题真假判定的口诀:真“非”假,假“非”真,一真“或”为真,两真“且”才真.【详解】(1),且,解得所以当为真命题时,实数的取值范围是.(2)由,可得,又∵当时,,.∵当为真命题,且为假命题时,∴与的真假性相同,当假假时,有,解得;当真真时,有,解得;故当为真命题且为假命题时,可得或.本题主要考查结合不等式的含有量词的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 展馆空间设计项目效益评估报告
- 山东财经大学《分析化学实验2》2023-2024学年第二学期期末试卷
- 和君职业学院《护理礼仪》2023-2024学年第二学期期末试卷
- 滨州学院《GPS》2023-2024学年第二学期期末试卷
- 桂林信息科技学院《成瘾医学》2023-2024学年第二学期期末试卷
- 广东轻工职业技术学院《nux系统及其应用》2023-2024学年第二学期期末试卷
- 湖北工业职业技术学院《搜索引擎系统应用实践》2023-2024学年第二学期期末试卷
- 内蒙古农业大学《小学生阅读指导与训练》2023-2024学年第二学期期末试卷
- 2025年止咳化痰类药物项目建议书
- 江门广东江门市应急救援支队专职应急救援员招聘笔试历年参考题库附带答案详解
- 18-《护理心理学》课程标准
- 大国崛起专题课件
- 小学特教综合人教二年级下册目录《、我的学校》教案
- 高考英语单词3500分类记忆(精编版)
- 非公开发行公司债券的法律意见书模版
- 汽车空调技术与维修教案
- 企业管理概论-课件全书课件完整版ppt全套教学教程最全电子教案电子讲义(最新)
- 餐饮服务食品安全监督量化分级动态等级评定检查表
- 北师大版语文选修《萧萧》ppt课件1
- 《谈骨气》课文阅读(共2页)
- 病原生物与免疫学(中职)绪论PPT课件
评论
0/150
提交评论