版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届黑龙江省哈尔滨尚志中学高考模拟金典卷数学试题(十)试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,内角A,B,C所对的边分别为a,b,c,且.若,的面积为,则()A.5 B. C.4 D.162.某中学2019年的高考考生人数是2016年高考考生人数的1.2倍,为了更好地对比该校考生的升学情况,统计了该校2016年和2019年的高考情况,得到如图柱状图:则下列结论正确的是().A.与2016年相比,2019年不上线的人数有所增加B.与2016年相比,2019年一本达线人数减少C.与2016年相比,2019年二本达线人数增加了0.3倍D.2016年与2019年艺体达线人数相同3.已知m,n为异面直线,m⊥平面α,n⊥平面β,直线l满足l⊥m,l⊥n,则()A.α∥β且∥α B.α⊥β且⊥βC.α与β相交,且交线垂直于 D.α与β相交,且交线平行于4.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案种数是()A.18种 B.36种 C.54种 D.72种5.复数的虚部为()A.—1 B.—3 C.1 D.26.下列函数中,既是偶函数又在区间上单调递增的是()A. B. C. D.7.著名的斐波那契数列:1,1,2,3,5,8,…,满足,,,若,则()A.2020 B.4038 C.4039 D.40408.已知正三棱锥的所有顶点都在球的球面上,其底面边长为4,、、分别为侧棱,,的中点.若在三棱锥内,且三棱锥的体积是三棱锥体积的4倍,则此外接球的体积与三棱锥体积的比值为()A. B. C. D.9.在中,,,,点满足,则等于()A.10 B.9 C.8 D.710.在我国传统文化“五行”中,有“金、木、水、火、土”五个物质类别,在五者之间,有一种“相生”的关系,具体是:金生水、水生木、木生火、火生土、土生金.从五行中任取两个,这二者具有相生关系的概率是()A.0.2 B.0.5 C.0.4 D.0.811.若x,y满足约束条件的取值范围是A.[0,6] B.[0,4] C.[6, D.[4,12.设集合,,则集合A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设全集,,,则______.14.在中,已知,,是边的垂直平分线上的一点,则__________.15.已知函数.若在区间上恒成立.则实数的取值范围是__________.16.函数的定义域为,其图象如图所示.函数是定义域为的奇函数,满足,且当时,.给出下列三个结论:①;②函数在内有且仅有个零点;③不等式的解集为.其中,正确结论的序号是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在四棱锥中,底面是边长为2的菱形,是的中点.(1)证明:平面;(2)设是线段上的动点,当点到平面距离最大时,求三棱锥的体积.18.(12分)已知曲线:和:(为参数).以原点为极点,轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位.(1)求曲线的直角坐标方程和的方程化为极坐标方程;(2)设与,轴交于,两点,且线段的中点为.若射线与,交于,两点,求,两点间的距离.19.(12分)已知抛物线的顶点为原点,其焦点关于直线的对称点为,且.若点为的准线上的任意一点,过点作的两条切线,其中为切点.(1)求抛物线的方程;(2)求证:直线恒过定点,并求面积的最小值.20.(12分)一年之计在于春,一日之计在于晨,春天是播种的季节,是希望的开端.某种植户对一块地的个坑进行播种,每个坑播3粒种子,每粒种子发芽的概率均为,且每粒种子是否发芽相互独立.对每一个坑而言,如果至少有两粒种子发芽,则不需要进行补播种,否则要补播种.(1)当取何值时,有3个坑要补播种的概率最大?最大概率为多少?(2)当时,用表示要补播种的坑的个数,求的分布列与数学期望.21.(12分)在平面直角坐标系中,已知点,曲线:(为参数)以原点为极点,轴正半轴建立极坐标系,直线的极坐标方程为.(Ⅰ)判断点与直线的位置关系并说明理由;(Ⅱ)设直线与曲线的两个交点分别为,,求的值.22.(10分)以平面直角坐标系的原点为极点,轴的正半轴为极轴,且在两种坐标系中取相同的长度单位,建立极坐标系,已知曲线,曲线(为参数),求曲线交点的直角坐标.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
根据正弦定理边化角以及三角函数公式可得,再根据面积公式可求得,再代入余弦定理求解即可.【详解】中,,由正弦定理得,又,∴,又,∴,∴,又,∴.∵,∴,∵,∴由余弦定理可得,∴,可得.故选:C本题主要考查了解三角形中正余弦定理与面积公式的运用,属于中档题.2.A【解析】
设2016年高考总人数为x,则2019年高考人数为,通过简单的计算逐一验证选项A、B、C、D.【详解】设2016年高考总人数为x,则2019年高考人数为,2016年高考不上线人数为,2019年不上线人数为,故A正确;2016年高考一本人数,2019年高考一本人数,故B错误;2019年二本达线人数,2016年二本达线人数,增加了倍,故C错误;2016年艺体达线人数,2019年艺体达线人数,故D错误.故选:A.本题考查柱状图的应用,考查学生识图的能力,是一道较为简单的统计类的题目.3.D【解析】
试题分析:由平面,直线满足,且,所以,又平面,,所以,由直线为异面直线,且平面平面,则与相交,否则,若则推出,与异面矛盾,所以相交,且交线平行于,故选D.考点:平面与平面的位置关系,平面的基本性质及其推论.4.B【解析】
把4名大学生按人数分成3组,为1人、1人、2人,再把这三组分配到3个乡镇即得.【详解】把4名大学生按人数分成3组,为1人、1人、2人,再把这三组分配到3个乡镇,则不同的分配方案有种.故选:.本题考查排列组合,属于基础题.5.B【解析】
对复数进行化简计算,得到答案.【详解】所以的虚部为故选B项.本题考查复数的计算,虚部的概念,属于简单题.6.C【解析】
结合基本初等函数的奇偶性及单调性,结合各选项进行判断即可.【详解】A:为非奇非偶函数,不符合题意;B:在上不单调,不符合题意;C:为偶函数,且在上单调递增,符合题意;D:为非奇非偶函数,不符合题意.故选:C.本小题主要考查函数的单调性和奇偶性,属于基础题.7.D【解析】
计算,代入等式,根据化简得到答案.【详解】,,,故,,故.故选:.本题考查了斐波那契数列,意在考查学生的计算能力和应用能力.8.D【解析】
如图,平面截球所得截面的图形为圆面,计算,由勾股定理解得,此外接球的体积为,三棱锥体积为,得到答案.【详解】如图,平面截球所得截面的图形为圆面.正三棱锥中,过作底面的垂线,垂足为,与平面交点记为,连接、.依题意,所以,设球的半径为,在中,,,,由勾股定理:,解得,此外接球的体积为,由于平面平面,所以平面,球心到平面的距离为,则,所以三棱锥体积为,所以此外接球的体积与三棱锥体积比值为.故选:D.本题考查了三棱锥的外接球问题,三棱锥体积,球体积,意在考查学生的计算能力和空间想象能力.9.D【解析】
利用已知条件,表示出向量,然后求解向量的数量积.【详解】在中,,,,点满足,可得则==本题考查了向量的数量积运算,关键是利用基向量表示所求向量.10.B【解析】
利用列举法,结合古典概型概率计算公式,计算出所求概率.【详解】从五行中任取两个,所有可能的方法为:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土,共种,其中由相生关系的有金水、木水、木火、火土、金土,共种,所以所求的概率为.故选:B本小题主要考查古典概型的计算,属于基础题.11.D【解析】解:x、y满足约束条件,表示的可行域如图:目标函数z=x+2y经过C点时,函数取得最小值,由解得C(2,1),目标函数的最小值为:4目标函数的范围是[4,+∞).故选D.12.B【解析】
先求出集合和它的补集,然后求得集合的解集,最后取它们的交集得出结果.【详解】对于集合A,,解得或,故.对于集合B,,解得.故.故选B.本小题主要考查一元二次不等式的解法,考查对数不等式的解法,考查集合的补集和交集的运算.对于有两个根的一元二次不等式的解法是:先将二次项系数化为正数,且不等号的另一边化为,然后通过因式分解,求得对应的一元二次方程的两个根,再利用“大于在两边,小于在中间”来求得一元二次不等式的解集.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
先求出集合,,然后根据交集、补集的定义求解即可.【详解】解:,或;∴;∴.故答案为:.本题主要考查集合的交集、补集运算,属于基础题.14.【解析】
作出图形,设点为线段的中点,可得出且,进而可计算出的值.【详解】设点为线段的中点,则,,,.故答案为:.本题考查平面向量数量积的计算,涉及平面向量数量积运算律的应用,解答的关键就是选择合适的基底表示向量,考查计算能力,属于中等题.15.【解析】
首先解不等式,再由在区间上恒成立,即得到不等组,解得即可.【详解】解:且,即解得,即因为在区间上恒成立,解得即故答案为:本题考查一元二次不等式及函数的综合问题,属于基础题.16.①③【解析】
利用奇函数和,得出函数的周期为,由图可直接判断①;利用赋值法求得,结合,进而可判断函数在内的零点个数,可判断②的正误;采用换元法,结合图象即可得解,可判断③的正误.综合可得出结论.【详解】因为函数是奇函数,所以,又,所以,即,所以,函数的周期为.对于①,由于函数是上的奇函数,所以,,故①正确;对于②,,令,可得,得,所以,函数在区间上的零点为和.因为函数的周期为,所以函数在内有个零点,分别是、、、、,故②错误;对于③,令,则需求的解集,由图象可知,,所以,故③正确.故答案为:①③.本题考查函数的图象与性质,涉及奇偶性、周期性和零点等知识点,考查学生分析问题的能力和数形结合能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)见解析(2)【解析】
(1)连接与交于,连接,证明即可得证线面平行;(2)首先证明平面(只要取中点,可证平面,从而得,同理得),因此点到直线的距离即为点到平面的距离,由平面几何知识易得最大值,然后可计算体积.【详解】(1)证明:连接与交于,连接,因为是菱形,所以为的中点,又因为为的中点,所以,因为平面平面,所以平面.(2)解:取中点,连接,因为四边形是菱形,,且,所以,又,所以平面,又平面,所以.同理可证:,又,所以平面,所以平面平面,又平面平面,所以点到直线的距离即为点到平面的距离,过作直线的垂线段,在所有垂线段中长度最大为,因为为的中点,故点到平面的最大距离为1,此时,为的中点,即,所以,所以.本题考查证明线面平行,考查求棱锥的体积,掌握面面垂直与线面垂直的判定与性质是解题关键.18.(1),;(2)1.【解析】
(1)利用正弦的和角公式,结合极坐标化为直角坐标的公式,即可求得曲线的直角坐标方程;先写出曲线的普通方程,再利用公式化简为极坐标即可;(2)先求出的直角坐标,据此求得中点的直角坐标,将其转化为极坐标,联立曲线的极坐标方程,即可求得两点的极坐标,则距离可解.【详解】(1):可整理为,利用公式可得其直角坐标方程为:,:的普通方程为,利用公式可得其极坐标方程为(2)由(1)可得的直角坐标方程为,故容易得,,∴,∴的极坐标方程为,把代入得,.把代入得,.∴,即,两点间的距离为1.本题考查极坐标方程和直角坐标方程之间的转化,涉及参数方程转化为普通方程,以及在极坐标系中求两点之间的距离,属综合基础题.19.(1)(2)见解析,最小值为4【解析】
(1)根据焦点到直线的距离列方程,求得的值,由此求得抛物线的方程.(2)设出的坐标,利用导数求得切线的方程,由此判断出直线恒过抛物线焦点.求得三角形面积的表达式,进而求得面积的最小值.【详解】(1)依题意,解得(负根舍去)∴抛物线的方程为(2)设点,由,即,得∴抛物线在点处的切线的方程为,即∵,∴∵点在切线上,①,同理,②综合①、②得,点的坐标都满足方程.即直线恒过抛物线焦点当时,此时,可知:当,此时直线直线的斜率为,得于是,而把直线代入中消去得,即:当时,最小,且最小值为4本小题主要考查点到直线的距离公式,考查抛物线方程的求法,考查抛物线的切线方程的求法,考查直线过定点问题,考查抛物线中三角形面积的最值的求法,考查运算求解能力,属于难题.20.(1)当或时,有3个坑要补播种的概率最大,最大概率为;(2)见解析.【解析】
(1)将有3个坑需要补种表示成n的函数,考查函数随n的变化情况,即可得到n为何值时有3个坑要补播
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 淮阴师范学院《外国文学(1)》2021-2022学年第一学期期末试卷
- 淮阴师范学院《中学美术学科教学论》2022-2023学年第一学期期末试卷
- 淮阴师范学院《形势与政策(4)》2022-2023学年第一学期期末试卷
- 淮阴工学院《思想道德修养与法律基础》2021-2022学年期末试卷
- DB4414T+34-2024黑皮鸡枞菌栽培技术规程
- DB2310-T 145-2024红松幼林间作桂皮紫萁栽培技术规程
- 废弃资源综合利用的金融与保险业考核试卷
- 畜牧业与农村贫困地区的扶贫问题考核试卷
- 借助人物塑造手法分析人物形象-托尔斯泰《复活(节选)》讲义及练习
- 电池废弃资源综合利用的回收再利用方案考核试卷
- 乒乓球竞赛规则、规程与裁判法
- 中华民族共同体概论课件专家版2第二讲 树立正确的中华民族历史观
- 2024年广东机场集团招聘笔试参考题库附带答案详解
- (2024年)互联网营销师培训
- 苏教版五年级上册数学期中复习
- 2024届高考英语复习读后续写 亲情感悟篇原文和范文 11套素材
- 盾构施工超前地质预报方法
- 湖北省武汉市青山区2023-2024学年部编版七年级历史上学期期中试题
- 政府与企业屋顶太阳能光伏合作开发框架协议
- 做负责任的人
- 【道德与法治】云南省保山市腾冲市2023-2024学年九年级上学期期末试题
评论
0/150
提交评论