版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022届陕西省西安电子科技大附属中学中考试题猜想数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.计算3–(–9)的结果是()A.12 B.–12 C.6 D.–62.已知下列命题:①对顶角相等;②若a>b>0,则<;③对角线相等且互相垂直的四边形是正方形;④抛物线y=x2﹣2x与坐标轴有3个不同交点;⑤边长相等的多边形内角都相等.从中任选一个命题是真命题的概率为()A. B. C. D.3.下列说法正确的是()A.﹣3是相反数 B.3与﹣3互为相反数C.3与互为相反数 D.3与﹣互为相反数4.如图,已知第一象限内的点A在反比例函数y=2x上,第二象限的点B在反比例函数y=kxA.﹣22 B.4 C.﹣4 D.225.的算术平方根为()A. B. C. D.6.如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点D在y轴上,且在点A下方,点E是边长为2、中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为()A.3 B.4﹣ C.4 D.6﹣27.如图所示的四个图案是四国冬季奥林匹克运动会会徽图案上的一部分图形,其中为轴对称图形的是()A. B. C. D.8.如图,已知,为反比例函数图象上的两点,动点在轴正半轴上运动,当线段与线段之差达到最大时,点的坐标是()A. B. C. D.9.如图,若AB∥CD,CD∥EF,那么∠BCE=()A.∠1+∠2 B.∠2-∠1C.180°-∠1+∠2 D.180°-∠2+∠110.如图,△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=5,CD=3,BD=4,则⊙O的直径等于()A.52 B.32 C.511.下列事件中必然发生的事件是()A.一个图形平移后所得的图形与原来的图形不全等B.不等式的两边同时乘以一个数,结果仍是不等式C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D.随意翻到一本书的某页,这页的页码一定是偶数12.某校九年级(1)班学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1980张相片,如果全班有x名学生,根据题意,列出方程为A. B.x(x+1)=1980C.2x(x+1)=1980 D.x(x-1)=1980二、填空题:(本大题共6个小题,每小题4分,共24分.)13.因式分解:________.14.下面是“作已知圆的内接正方形”的尺规作图过程.已知:⊙O.求作:⊙O的内接正方形.作法:如图,(1)作⊙O的直径AB;(2)分别以点A,点B为圆心,大于12(3)作直线MN与⊙O交于C、D两点,顺次连接A、C、B、D.即四边形ACBD为所求作的圆内接正方形.请回答:该尺规作图的依据是_____.15.直角三角形的两条直角边长为6,8,那么斜边上的中线长是____.16.如图,在平行四边形中,点在边上,将沿折叠得到,点落在对角线上.若,,,则的周长为________.17.如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所示尺寸(单位:mm),计算出这个立体图形的表面积.18.如图,直线y=x与双曲线y=交于A,B两点,OA=2,点C在x轴的正半轴上,若∠ACB=90°,则点C的坐标为______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A.由父母一方照看;B.由爷爷奶奶照看;C.由叔姨等近亲照看;D.直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.该班共有名留守学生,B类型留守学生所在扇形的圆心角的度数为;将条形统计图补充完整;已知该校共有2400名学生,现学校打算对D类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?20.(6分)如果一条抛物线与轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)“抛物线三角形”一定是三角形;(2)若抛物线的“抛物线三角形”是等腰直角三角形,求的值;(3)如图,△是抛物线的“抛物线三角形”,是否存在以原点为对称中心的矩形?若存在,求出过三点的抛物线的表达式;若不存在,说明理由.21.(6分)如图,在平面直角坐标系中,矩形DOBC的顶点O与坐标原点重合,B、D分别在坐标轴上,点C的坐标为(6,4),反比例函数y=(x>0)的图象经过线段OC的中点A,交DC于点E,交BC于点F.(1)求反比例函数的解析式;(2)求△OEF的面积;(3)设直线EF的解析式为y=k2x+b,请结合图象直接写出不等式k2x+b>的解集.22.(8分)已知:如图,△MNQ中,MQ≠NQ.(1)请你以MN为一边,在MN的同侧构造一个与△MNQ全等的三角形,画出图形,并简要说明构造的方法;(2)参考(1)中构造全等三角形的方法解决下面问题:如图,在四边形ABCD中,,∠B=∠D.求证:CD=AB.23.(8分)解方程(2x+1)2=3(2x+1)24.(10分)如图,已知ABCD是边长为3的正方形,点P在线段BC上,点G在线段AD上,PD=PG,DF⊥PG于点H,交AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连接EF.(1)求证:DF=PG;(2)若PC=1,求四边形PEFD的面积.25.(10分)春节期间,小丽一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.租车公司:按日收取固定租金80元,另外再按租车时间计费.共享汽车:无固定租金,直接以租车时间(时)计费.如图是两种租车方式所需费用y1(元)、y2(元)与租车时间x(时)之间的函数图象,根据以上信息,回答下列问题:(1)分别求出y1、y2与x的函数表达式;(2)请你帮助小丽一家选择合算的租车方案.26.(12分)4×100米拉力赛是学校运动会最精彩的项目之一.图中的实线和虚线分别是初三•一班和初三•二班代表队在比赛时运动员所跑的路程y(米)与所用时间x(秒)的函数图象(假设每名运动员跑步速度不变,交接棒时间忽略不计).问题:(1)初三•二班跑得最快的是第接力棒的运动员;(2)发令后经过多长时间两班运动员第一次并列?27.(12分)(1)计算:.(2)解方程:x2﹣4x+2=0
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解析】
根据有理数的减法,即可解答.【详解】故选A.【点睛】本题考查了有理数的减法,解决本题的关键是熟记减去一个数等于加上这个数的相反数.2、B【解析】∵①对顶角相等,故此选项正确;②若a>b>0,则<,故此选项正确;③对角线相等且互相垂直平分的四边形是正方形,故此选项错误;④抛物线y=x2﹣2x与坐标轴有2个不同交点,故此选项错误;⑤边长相等的多边形内角不一定都相等,故此选项错误;∴从中任选一个命题是真命题的概率为:.故选:B.3、B【解析】
符号不同,绝对值相等的两个数互为相反数,可据此来判断各选项是否正确.【详解】A、3和-3互为相反数,错误;B、3与-3互为相反数,正确;C、3与互为倒数,错误;D、3与-互为负倒数,错误;故选B.【点睛】此题考查相反数问题,正确理解相反数的定义是解答此题的关键.4、C【解析】试题分析:作AC⊥x轴于点C,作BD⊥x轴于点D.则∠BDO=∠ACO=90°,则∠BOD+∠OBD=90°,∵OA⊥OB,∴∠BOD+∠AOC=90°,∴∠BOD=∠AOC,∴△OBD∽△AOC,∴SΔOBDSΔAOC又∵S△AOC=12×2=1,∴S△OBD故选C.考点:1.相似三角形的判定与性质;2.反比例函数图象上点的坐标特征.5、B【解析】分析:先求得的值,再继续求所求数的算术平方根即可.详解:∵=2,而2的算术平方根是,∴的算术平方根是,故选B.点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.6、B【解析】分析:首先得到当点E旋转至y轴上时DE最小,然后分别求得AD、OE′的长,最后求得DE′的长即可.详解:如图,当点E旋转至y轴上时DE最小;∵△ABC是等边三角形,D为BC的中点,∴AD⊥BC∵AB=BC=2∴AD=AB•sin∠B=,∵正六边形的边长等于其半径,正六边形的边长为2,∴OE=OE′=2∵点A的坐标为(0,6)∴OA=6∴DE′=OA-AD-OE′=4-故选B.点睛:本题考查了正多边形的计算及等边三角形的性质,解题的关键是从图形中整理出直角三角形.7、D【解析】
根据轴对称图形的概念求解.【详解】解:根据轴对称图形的概念,A、B、C都不是轴对称图形,D是轴对称图形.
故选D.【点睛】本题主要考查轴对称图形,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形8、D【解析】
求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【详解】把,代入反比例函数,得:,,,在中,由三角形的三边关系定理得:,延长交轴于,当在点时,,即此时线段与线段之差达到最大,设直线的解析式是,把,的坐标代入得:,解得:,直线的解析式是,当时,,即,故选D.【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度.9、D【解析】
先根据AB∥CD得出∠BCD=∠1,再由CD∥EF得出∠DCE=180°-∠2,再把两式相加即可得出结论.【详解】解:∵AB∥CD,∴∠BCD=∠1,∵CD∥EF,∴∠DCE=180°-∠2,∴∠BCE=∠BCD+∠DCE=180°-∠2+∠1.故选:D.【点睛】本题考查的是平行线的判定,用到的知识点为:两直线平行,内错角相等,同旁内角互补.10、A【解析】
连接AO并延长到E,连接BE.设AE=2R,则∠ABE=90°,∠AEB=∠ACB,∠ADC=90°,利用勾股定理求得AD=AC2-DC2=52-【详解】解:如图,连接AO并延长到E,连接BE.设AE=2R,则∠ABE=90°,∠AEB=∠ACB;∵AD⊥BC于D点,AC=5,DC=3,∴∠ADC=90°,∴AD=AC∴AB=在Rt△ABE与Rt△ADC中,∠ABE=∠ADC=90°,∠AEB=∠ACB,∴Rt△ABE∽Rt△ADC,∴ABAD即2R=AB⋅ACAD=4∴⊙O的直径等于52故答案选:A.【点睛】本题主要考查了圆周角定理、勾股定理,解题的关键是掌握辅助线的作法.11、C【解析】
直接利用随机事件、必然事件、不可能事件分别分析得出答案.【详解】A、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;B、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;C、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;D、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误;故选C.【点睛】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关定义是解题关键.12、D【解析】
根据题意得:每人要赠送(x﹣1)张相片,有x个人,然后根据题意可列出方程.【详解】根据题意得:每人要赠送(x﹣1)张相片,有x个人,∴全班共送:(x﹣1)x=1980,故选D.【点睛】此题主要考查了一元二次方程的应用,本题要注意读清题意,弄清楚每人要赠送(x﹣1)张相片,有x个人是解决问题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、n(m+2)(m﹣2)【解析】
先提取公因式n,再利用平方差公式分解即可.【详解】m2n﹣4n=n(m2﹣4)=n(m+2)(m﹣2)..故答案为n(m+2)(m﹣2).【点睛】本题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键14、相等的圆心角所对的弦相等,直径所对的圆周角是直角.【解析】
根据圆内接正四边形的定义即可得到答案.【详解】到线段两端距离相等的点在这条线段的中垂线上;两点确定一条直线;互相垂直的直径将圆四等分,从而得到答案.【点睛】本题主要考查了圆内接正四边形的定义以及基本性质,解本题的要点在于熟知相关基本知识点.15、1.【解析】
试题分析:∵直角三角形的两条直角边长为6,8,∴由勾股定理得,斜边=10.∴斜边上的中线长=×10=1.考点:1.勾股定理;2.直角三角形斜边上的中线性质.16、6.【解析】
先根据平行线的性质求出BC=AD=5,再根据勾股定理可得AC=4,然后根据折叠的性质可得AF=AB=3,EF=BE,从而可求出的周长.【详解】解:∵四边形是平行四边形,∴BC=AD=5,∵,∴AC===4∵沿折叠得到,∴AF=AB=3,EF=BE,∴的周长=CE+EF+FC=CE+BE+CF=BC+AC-AF=5+4-3=6故答案为6.【点睛】本题考查了平行四边形的性质,勾股定理,折叠的性质,三角形的周长计算方法,运用转化思想是解题的关键.17、100mm1【解析】
首先根据三视图得到两个长方体的长,宽,高,在分别表示出每个长方体的表面积,最后减去上面的长方体与下面的长方体的接触面积即可.【详解】根据三视图可得:上面的长方体长4mm,高4mm,宽1mm,下面的长方体长8mm,宽6mm,高1mm,∴立体图形的表面积是:4×4×1+4×1×1+4×1+6×1×1+8×1×1+6×8×1-4×1=100(mm1).故答案为100mm1.【点睛】此题主要考查了由三视图判断几何体以及求几何体的表面积,根据图形看出长方体的长,宽,高是解题的关键.18、(2,0)【解析】
根据直线y=x与双曲线y=交于A,B两点,OA=2,可得AB=2AO=4,再根据Rt△ABC中,OC=AB=2,即可得到点C的坐标【详解】如图所示,∵直线y=x与双曲线y=交于A,B两点,OA=2,∴AB=2AO=4,又∵∠ACB=90°,∴Rt△ABC中,OC=AB=2,又∵点C在x轴的正半轴上,∴C(2,0),故答案为(2,0).【点睛】本题主要考查了反比例函数与一次函数交点问题,解决问题的关键是利用直角三角形斜边上中线的性质得到OC的长.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)10,144;(2)详见解析;(3)96【解析】
(1)依据C类型的人数以及百分比,即可得到该班留守的学生数量,依据B类型留守学生所占的百分比,即可得到其所在扇形的圆心角的度数;(2)依据D类型留守学生的数量,即可将条形统计图补充完整;(3)依据D类型的留守学生所占的百分比,即可估计该校将有多少名留守学生在此关爱活动中受益.【详解】解:(1)2÷20%=10(人),×100%×360°=144°,故答案为10,144;(2)10﹣2﹣4﹣2=2(人),如图所示:(3)2400××20%=96(人),答:估计该校将有96名留守学生在此关爱活动中受益.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.20、(1)等腰(2)(3)存在,【解析】解:(1)等腰(2)∵抛物线的“抛物线三角形”是等腰直角三角形,∴该抛物线的顶点满足.∴.(3)存在.如图,作△与△关于原点中心对称,则四边形为平行四边形.当时,平行四边形为矩形.又∵,∴△为等边三角形.作,垂足为.∴.∴.∴.∴,.∴,.设过点三点的抛物线,则解之,得∴所求抛物线的表达式为.21、(1)y=;(2);(3)<x<1.【解析】
(1)先利用矩形的性质确定C点坐标(1,4),再确定A点坐标为(3,2),根据反比例函数图象上点的坐标特征得到k1=1,即反比例函数解析式为y=;(2)利用反比例函数解析式确定F点的坐标为(1,1),E点坐标为(,4),然后根据△OEF的面积=S矩形BCDO﹣S△ODE﹣S△OBF﹣S△CEF进行计算;(3)观察函数图象得到当<x<1时,一次函数图象都在反比例函数图象上方,即k2x+b>.【详解】(1)∵四边形DOBC是矩形,且点C的坐标为(1,4),∴OB=1,OD=4,∵点A为线段OC的中点,∴A点坐标为(3,2),∴k1=3×2=1,∴反比例函数解析式为y=;(2)把x=1代入y=得y=1,则F点的坐标为(1,1);把y=4代入y=得x=,则E点坐标为(,4),△OEF的面积=S矩形BCDO﹣S△ODE﹣S△OBF﹣S△CEF=4×1﹣×4×﹣×1×1﹣×(1﹣)×(4﹣1)=;(3)由图象得:不等式不等式k2x+b>的解集为<x<1.【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解即可.22、(1)作图见解析;(2)证明书见解析.【解析】
(1)以点N为圆心,以MQ长度为半径画弧,以点M为圆心,以NQ长度为半径画弧,两弧交于一点F,则△MNF为所画三角形.(2)延长DA至E,使得AE=CB,连结CE.证明△EAC≌△BCA,得:∠B=∠E,AB=CE,根据等量代换可以求得答案.【详解】解:(1)如图1,以N为圆心,以MQ为半径画圆弧;以M为圆心,以NQ为半径画圆弧;两圆弧的交点即为所求.(2)如图,延长DA至E,使得AE=CB,连结CE.∵∠ACB+∠CAD=180°,∠DACDAC+∠EAC=180°,∴∠BACBCA=∠EAC.在△EAC和△BAC中,AE=CE,AC=CA,∠EAC=∠BCN,∴△AECEAC≌△BCA(SAS).∴∠B=∠E,AB=CE.∵∠B=∠D,∴∠D=∠E.∴CD=CE,∴CD=AB.考点:1.尺规作图;2.全等三角形的判定和性质.23、x1=-,x2=1【解析】试题分析:分解因式得出(2x+1)(2x+1﹣3)=0,推出方程2x+1=0,2x+1﹣3=0,求出方程的解即可.试题解析:解:整理得:(2x+1)2-3(2x+1)=0,分解因式得:(2x+1)(2x+1﹣3)=0,即2x+1=0,2x+1﹣3=0,解得:x1=﹣,x2=1.点睛:本题考查了解一元一次方程和解一元二次方程的应用,解答此题的关键是把一元二次方程转化成解一元一次方程,题目比较典型,难度不大.24、(1)证明见解析;(2)1.【解析】
作PM⊥AD,在四边形ABCD和四边形ABPM证AD=PM;DF⊥PG,得出∠GDH+∠DGH=90°,推出∠ADF=∠MPG;还有两个直角即可证明△ADF≌△MPG,从而得出对应边相等(2)由已知得,DG=2PC=2;△ADF≌△MPG得出DF=PD;根据旋转,得出∠EPG=90°,PE=PG从而得出四边形PEFD为平行四边形;根据勾股定理和等量代换求出边长DF的值;根据相似三角形得出对应边成比例求出GH的值,从而求出高PH的值;最后根据面积公式得出【详解】解:(1)证明:∵四边形ABCD为正方形,∴AD=AB,∵四边形ABPM为矩形,∴AB=PM,∴AD=PM,∵DF⊥PG,∴∠DHG=90°,∴∠GDH+∠DGH=90°,∵∠MGP+∠MPG=90°,∴∠GDH=∠MPG,在△ADF和△MPG中,∴△ADF≌△MPG(ASA),∴DF=PG;(2)作PM⊥DG于M,如图,∵PD=PG,∴MG=MD,∵四边形ABCD为矩形,∴PCDM为矩形,∴PC=MD,∴DG=2PC=2;∵△ADF≌△MPG(ASA),∴DF=PG,而PD=PG,∴DF=PD,∵线段PG绕点P逆时针旋转90°得到线段PE,∴∠EPG=90°,PE=PG,∴PE=PD=DF,而DF⊥PG,∴DF∥PE,即DF∥PE,且DF=PE,∴四边形PEFD为平行四边形,在Rt△PCD中,PC=1,CD=3,∴PD==,∴DF=PG=PD=,∵四边形CDMP是矩形,∴PM=CD=3,MD=PC=1,∵PD=PG,PM⊥AD,∴MG=MD=1,DG=2,∵∠GDH=∠MPG,∠DHG=∠PMG=90°,∴△DHG∽△PMG,∴,∴GH==,∴PH=PG﹣GH=﹣=,∴四边形PEFD的面积=DF•PH=×=1.【点睛】本题考查了平行四边形的面积、勾股定理、相似三角形判定、全等三角形性质,本题的关键是求边长和高的值25、(1)y1=kx+80,y2=30x;(2)见解析.【解析】
(1)设y1=kx+80,将(2,110)代入求解即可;设y2=mx,将(5,150)代入求解即可;(2)分y1=y2,y1<y2,y1>y2三种情况分析即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024福建福州鼓楼区华大街道办事处招聘专职网格员笔试备考试题及答案解析
- 成都到乌鲁木齐2024年度货物运输时间延误赔偿合同
- 二零二四年度融资租赁合同的具体条款与操作流程
- 二零二四年农机具维修与配件供应合同
- 瓷砖美缝工程2024年度合作框架合同
- 二零二四年度奢侈品品牌管理保密协议
- 成都旅游服务合同(04版)
- 二零二四年度网络推广与搜索引擎优化服务合同
- 二零二四年度渔业养殖区建设爆破作业承包合同
- 国企红色教育合作协议书范本(2篇)
- 部编(统编)版高中历史必修《中外历史纲要(上)》全册教案教学设计-新教材-含教学计划 教学进度 培优补差计划-
- 水闸维修养护技术规程-共89页PPT课件
- 部编版三年级下册语文学情分析(每一课都有)
- 国家开放大学计算机应用基础(本) 终结性考试试题及参考答案
- 供水管道工程施工组织设计
- 人教版一年级上册数学期中测试题 (2)
- 运营安全管理方案
- 天然气水合物科普PPT
- 医院信息系统安全等级保护建设方案
- 状态空间平均法建立小信号模型
- 新三年级数学家长会
评论
0/150
提交评论