2022届安徽省巢湖市居巢区黄麓中心学校初中数学毕业考试模拟冲刺卷含解析_第1页
2022届安徽省巢湖市居巢区黄麓中心学校初中数学毕业考试模拟冲刺卷含解析_第2页
2022届安徽省巢湖市居巢区黄麓中心学校初中数学毕业考试模拟冲刺卷含解析_第3页
2022届安徽省巢湖市居巢区黄麓中心学校初中数学毕业考试模拟冲刺卷含解析_第4页
2022届安徽省巢湖市居巢区黄麓中心学校初中数学毕业考试模拟冲刺卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022届安徽省巢湖市居巢区黄麓中心学校初中数学毕业考试模拟冲刺卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为()A.8 B.10 C.13 D.142.下列运算正确的是()A.a2+a3=a5 B.(a3)2÷a6=1 C.a2•a3=a6 D.(2+3)2=53.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有()A.1个 B.2个 C.3个 D.4个4.在数轴上到原点距离等于3的数是()A.3 B.﹣3 C.3或﹣3 D.不知道5.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:册数01234人数41216171关于这组数据,下列说法正确的是()A.中位数是2 B.众数是17 C.平均数是2 D.方差是26.如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形,转动这个四边形,使它形状改变,当,时,等于()A. B. C. D.7.函数y=和y=在第一象限内的图象如图,点P是y=的图象上一动点,PC⊥x轴于点C,交y=的图象于点B.给出如下结论:①△ODB与△OCA的面积相等;②PA与PB始终相等;③四边形PAOB的面积大小不会发生变化;④CA=AP.其中所有正确结论的序号是()A.①②③ B.②③④ C.①③④ D.①②④8.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()A. B. C. D.9.tan45º的值为()A. B.1 C. D.10.当ab>0时,y=ax2与y=ax+b的图象大致是()A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.袋中装有一个红球和二个黄球,它们除了颜色外都相同,随机从中摸出一球,记录下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到红球的概率是_____.12.已知二次函数f(x)=x2-3x+1,那么f(2)=_________.13.分解因式:xy2﹣2xy+x=_____.14.计算:(π﹣3)0﹣2-1=_____.15.如图,在△ABC中,∠C=40°,CA=CB,则△ABC的外角∠ABD=°.16.有两个一元二次方程:M:ax2+bx+c=0,N:cx2+bx+a=0,其中a+c=0,以下列四个结论中正确的是_____(填写序号).①如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根;②如果方程M有两根符号相同,那么方程N的两根符号也相同;③如果方程M和方程N有一个相同的根,那么这个根必是x=1;④如果5是方程M的一个根,那么是方程N的一个根.17.A、B两地之间为直线距离且相距600千米,甲开车从A地出发前往B地,乙骑自行车从B地出发前往A地,已知乙比甲晚出发1小时,两车均匀速行驶,当甲到达B地后立即原路原速返回,在返回途中再次与乙相遇后两车都停止,如图是甲、乙两人之间的距离s(千类)与甲出发的时间t(小时)之间的图象,则当甲第二次与乙相遇时,乙离B地的距离为_____千米.三、解答题(共7小题,满分69分)18.(10分)问题提出(1)如图1,正方形ABCD的对角线交于点O,△CDE是边长为6的等边三角形,则O、E之间的距离为;问题探究(2)如图2,在边长为6的正方形ABCD中,以CD为直径作半圆O,点P为弧CD上一动点,求A、P之间的最大距离;问题解决(3)窑洞是我省陕北农村的主要建筑,窑洞宾馆更是一道靓丽的风景线,是因为窑洞除了它的坚固性及特有的外在美之外,还具有冬暖夏凉的天然优点家住延安农村的一对即将参加中考的双胞胎小宝和小贝两兄弟,发现自家的窑洞(如图3所示)的门窗是由矩形ABCD及弓形AMD组成,AB=2m,BC=3.2m,弓高MN=1.2m(N为AD的中点,MN⊥AD),小宝说,门角B到门窗弓形弧AD的最大距离是B、M之间的距离.小贝说这不是最大的距离,你认为谁的说法正确?请通过计算求出门角B到门窗弓形弧AD的最大距离.19.(5分)(1)计算:(2)化简:20.(8分)如图,AB是⊙O的直径,BE是弦,点D是弦BE上一点,连接OD并延长交⊙O于点C,连接BC,过点D作FD⊥OC交⊙O的切线EF于点F.(1)求证:∠CBE=∠F;(2)若⊙O的半径是2,点D是OC中点,∠CBE=15°,求线段EF的长.21.(10分)阅读下面材料:已知:如图,在正方形ABCD中,边AB=a1.按照以下操作步骤,可以从该正方形开始,构造一系列的正方形,它们之间的边满足一定的关系,并且一个比一个小.操作步骤作法由操作步骤推断(仅选取部分结论)第一步在第一个正方形ABCD的对角线AC上截取AE=a1,再作EF⊥AC于点E,EF与边BC交于点F,记CE=a2(i)△EAF≌△BAF(判定依据是①);(ii)△CEF是等腰直角三角形;(iii)用含a1的式子表示a2为②:第二步以CE为边构造第二个正方形CEFG;第三步在第二个正方形的对角线CF上截取FH=a2,再作IH⊥CF于点H,IH与边CE交于点I,记CH=a3:(iv)用只含a1的式子表示a3为③:第四步以CH为边构造第三个正方形CHIJ这个过程可以不断进行下去.若第n个正方形的边长为an,用只含a1的式子表示an为④请解决以下问题:(1)完成表格中的填空:①;②;③;④;(2)根据以上第三步、第四步的作法画出第三个正方形CHIJ(不要求尺规作图).22.(10分)在一个不透明的布袋里装有4个标有1、2、3、4的小球,它们的形状、大小完全相同,李强从布袋中随机取出一个小球,记下数字为x,王芳在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点M的坐标画树状图列表,写出点M所有可能的坐标;求点在函数的图象上的概率.23.(12分)解不等式组:并把解集在数轴上表示出来.24.(14分)如图,在城市改造中,市政府欲在一条人工河上架一座桥,河的两岸PQ与MN平行,河岸MN上有A、B两个相距50米的凉亭,小亮在河对岸D处测得∠ADP=60°,然后沿河岸走了110米到达C处,测得∠BCP=30°,求这条河的宽.(结果保留根号)

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】

根据三角形的面积公式以及切线长定理即可求出答案.【详解】连接PE、PF、PG,AP,由题意可知:∠PEC=∠PFA=PGA=90°,∴S△PBC=BC•PE=×4×2=4,∴由切线长定理可知:S△PFC+S△PBG=S△PBC=4,∴S四边形AFPG=S△ABC+S△PFC+S△PBG+S△PBC=5+4+4=13,∴由切线长定理可知:S△APG=S四边形AFPG=,∴=×AG•PG,∴AG=,由切线长定理可知:CE=CF,BE=BG,∴△ABC的周长为AC+AB+CE+BE=AC+AB+CF+BG=AF+AG=2AG=13,故选C.【点睛】本题考查切线长定理,解题的关键是画出辅助线,熟练运用切线长定理,本题属于中等题型.2、B【解析】

利用合并同类项对A进行判断;根据幂的乘方和同底数幂的除法对B进行判断;根据同底数幂的乘法法则对C进行判断;利用完全平方公式对D进行判断.【详解】解:A、a2与a3不能合并,所以A选项错误;B、原式=a6÷a6=1,所以A选项正确;C、原式=a5,所以C选项错误;D、原式=2+26+3=5+26,所以D选项错误.故选:B.【点睛】本题考查同底数幂的乘除、二次根式的混合运算,:二次根式的混合运算先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.解题关键是在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3、B【解析】

解:根据中心对称的概念可得第一个图形是中心对称图形,第二个图形不是中心对称图形,第三个图形是中心对称图形,第四个图形不是中心对称图形,所以,中心对称图有2个.故选B.【点睛】本题考查中心对称图形的识别,掌握中心对称图形的概念是本题的解题关键.4、C【解析】

根据数轴上到原点距离等于3的数为绝对值是3的数即可求解.【详解】绝对值为3的数有3,-3.故答案为C.【点睛】本题考查数轴上距离的意义,解题的关键是知道数轴上的点到原点的距离为绝对值.5、A【解析】试题解析:察表格,可知这组样本数据的平均数为:(0×4+1×12+2×16+3×17+4×1)÷50=;∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,∴这组数据的中位数为2,故选A.考点:1.方差;2.加权平均数;3.中位数;4.众数.6、B【解析】

首先连接AC,由将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,AB=1,,易得△ABC是等边三角形,即可得到答案.【详解】连接AC,

∵将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,

∴AB=BC,

∵,

∴△ABC是等边三角形,

∴AC=AB=1.

故选:B.【点睛】本题考点:菱形的性质.7、C【解析】解:∵A、B是反比函数上的点,∴S△OBD=S△OAC=,故①正确;当P的横纵坐标相等时PA=PB,故②错误;∵P是的图象上一动点,∴S矩形PDOC=4,∴S四边形PAOB=S矩形PDOC﹣S△ODB﹣﹣S△OAC=4﹣﹣=3,故③正确;连接OP,=4,∴AC=PC,PA=PC,∴=3,∴AC=AP;故④正确;综上所述,正确的结论有①③④.故选C.点睛:本题考查的是反比例函数综合题,熟知反比例函数中系数k的几何意义是解答此题的关键.8、B【解析】解:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;故选B.9、B【解析】

解:根据特殊角的三角函数值可得tan45º=1,故选B.【点睛】本题考查特殊角的三角函数值.10、D【解析】

∵ab>0,∴a、b同号.当a>0,b>0时,抛物线开口向上,顶点在原点,一次函数过一、二、三象限,没有图象符合要求;当a<0,b<0时,抛物线开口向下,顶点在原点,一次函数过二、三、四象限,B图象符合要求.故选B.二、填空题(共7小题,每小题3分,满分21分)11、【解析】

首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到红球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到红球的有1种结果,所以两次都摸到红球的概率是,故答案为.【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.12、-1【解析】

根据二次函数的性质将x=2代入二次函数解析式中即可.【详解】f(x)=x2-3x+1f(2)=22-32+1=-1.故答案为-1.【点睛】本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.13、x(y-1)2【解析】分析:先提公因式x,再用完全平方公式把继续分解.详解:=x()=x()2.故答案为x()2.点睛:本题考查了因式分解,有公因式先提公因式,然后再用公式法继续分解,因式分解必须分解到每个因式都不能再分解为止.14、12【解析】

分别利用零指数幂a0=1(a≠0),负指数幂a-p=1a【详解】解:(π﹣3)0﹣2-1=1-12=1故答案为:12【点睛】本题考查了零指数幂和负整数指数幂的运算,掌握运算法则是解题关键.15、110【解析】试题解析:解:∵∠C=40°,CA=CB,∴∠A=∠ABC=70°,∴∠ABD=∠A+∠C=110°.考点:等腰三角形的性质、三角形外角的性质点评:本题主要考查了等腰三角形的性质、三角形外角的性质.等腰三角形的两个底角相等;三角形的外角等于与它不相邻的两个内角之和.16、①②④【解析】试题解析:①在方程ax2+bx+c=0中△=b2-4ac,在方程cx2+bx+a=0中△=b2-4ac,

∴如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根,正确;

②∵和符号相同,和符号也相同,

∴如果方程M有两根符号相同,那么方程N的两根符号也相同,正确;

③、M-N得:(a-c)x2+c-a=0,即(a-c)x2=a-c,

∵a≠c,

∴x2=1,解得:x=±1,错误;④∵5是方程M的一个根,

∴25a+5b+c=0,

∴a+b+c=0,

∴是方程N的一个根,正确.

故正确的是①②④.17、【解析】

根据题意和函数图象可以分别求得甲乙的速度,从而可以得到当甲第二次与乙相遇时,乙离B地的距离.【详解】设甲的速度为akm/h,乙的速度为bkm/h,,解得,,设第二次甲追上乙的时间为m小时,100m﹣25(m﹣1)=600,解得,m=,∴当甲第二次与乙相遇时,乙离B地的距离为:25×(-1)=千米,故答案为.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.三、解答题(共7小题,满分69分)18、(1);(2);(2)小贝的说法正确,理由见解析,.【解析】

(1)连接AC,BD,由OE垂直平分DC可得DH长,易知OH、HE长,相加即可;(2)补全⊙O,连接AO并延长交⊙O右半侧于点P,则此时A、P之间的距离最大,在Rt△AOD中,由勾股定理可得AO长,易求AP长;(1)小贝的说法正确,补全弓形弧AD所在的⊙O,连接ON,OA,OD,过点O作OE⊥AB于点E,连接BO并延长交⊙O上端于点P,则此时B、P之间的距离即为门角B到门窗弓形弧AD的最大距离,在Rt△ANO中,设AO=r,由勾股定理可求出r,在Rt△OEB中,由勾股定理可得BO长,易知BP长.【详解】解:(1)如图1,连接AC,BD,对角线交点为O,连接OE交CD于H,则OD=OC.∵△DCE为等边三角形,∴ED=EC,∵OD=OC∴OE垂直平分DC,∴DHDC=1.∵四边形ABCD为正方形,∴△OHD为等腰直角三角形,∴OH=DH=1,在Rt△DHE中,HEDH=1,∴OE=HE+OH=11;(2)如图2,补全⊙O,连接AO并延长交⊙O右半侧于点P,则此时A、P之间的距离最大,在Rt△AOD中,AD=6,DO=1,∴AO1,∴AP=AO+OP=11;(1)小贝的说法正确.理由如下,如图1,补全弓形弧AD所在的⊙O,连接ON,OA,OD,过点O作OE⊥AB于点E,连接BO并延长交⊙O上端于点P,则此时B、P之间的距离即为门角B到门窗弓形弧AD的最大距离,由题意知,点N为AD的中点,,∴ANAD=1.6,ON⊥AD,在Rt△ANO中,设AO=r,则ON=r﹣1.2.∵AN2+ON2=AO2,∴1.62+(r﹣1.2)2=r2,解得:r,∴AE=ON1.2,在Rt△OEB中,OE=AN=1.6,BE=AB﹣AE,∴BO,∴BP=BO+PO,∴门角B到门窗弓形弧AD的最大距离为.【点睛】本题考查了圆与多边形的综合,涉及了圆的有关概念及性质、等边三角形的性质、正方形和长方形的性质、勾股定理等,灵活的利用两点之间线段最短,添加辅助线将题中所求最大距离转化为圆外一点到圆上的最大距离是解题的关键.19、(1);(2)-1;【解析】

(1)根据负整数指数幂、特殊角的三角函数、零指数幂可以解答本题;(2)根据分式的除法和减法可以解答本题.【详解】(1)==2-.(2)=====-1【点睛】本题考查分式的混合运算、负整数指数幂、特殊角的三角函数、零指数幂,解答本题的关键是明确它们各自的计算方法.20、(1)详见解析;(1)【解析】

(1)连接OE交DF于点H,由切线的性质得出∠F+∠EHF=90∘,由FD⊥OC得出∠DOH+∠DHO=90∘,依据对顶角的定义得出∠EHF=∠DHO,从而求得∠F=∠DOH,依据∠CBE=∠DOH,从而即可得证;(1)依据圆周角定理及其推论得出∠F=∠COE=1∠CBE=30°,求出OD的值,利用锐角三角函数的定义求出OH的值,进一步求得HE的值,利用锐角三角函数的定义进一步求得EF的值.【详解】(1)证明:连接OE交DF于点H,∵EF是⊙O的切线,OE是⊙O的半径,∴OE⊥EF.∴∠F+∠EHF=90°.∵FD⊥OC,∴∠DOH+∠DHO=90°.∵∠EHF=∠DHO,∴∠F=∠DOH.∵∠CBE=∠DOH,∴(1)解:∵∠CBE=15°,∴∠F=∠COE=1∠CBE=30°.∵⊙O的半径是,点D是OC中点,∴.在Rt△ODH中,cos∠DOH=,∴OH=1.∴.在Rt△FEH中,∴【点睛】本题主要考查切线的性质及直角三角形的性质、圆周角定理及三角函数的应用,掌握圆周角定理和切线的性质是解题的关键.21、(1)①斜边和一条直角边分别相等的两个直角三角形全等②(﹣1)a1;③(-1)2a1;④(-1)n-1a1;(2)见解析.【解析】

(1)①由题意可知在Rt△EAF和Rt△BAF中,AE=AB,AF=AF,所以Rt△EAF≌Rt△BAF;②由题意得AB=AE=a1,AC=a1,则CE=a2=a1﹣a1=(﹣1)a1;③同上可知CF=CE=(-1)a1,FH=EF=a2,则CH=a3=CF﹣FH=(-1)2a1;④同理可得an=(-1)n-1a1;(2)根据题意画图即可.【详解】解:(1)①斜边和一条直角边分别相等的两个直角三角形全等;理由是:如图1,在Rt△EAF和Rt△BAF中,∵,∴Rt△EAF≌Rt△BAF(HL);②∵四边形ABCD是正方形,∴AB=BC=a1,∠ABC=90°,∴AC=a1,∵AE=AB=a1,∴CE=a2=a1﹣a1=(﹣1)a1;③∵四边形CEFG是正方形,∴△CEF是等腰直角三角形,∴CF=CE=(-1)a1,∵FH=EF=a2,∴CH=a3=CF﹣FH=(-1)a1﹣(-1)a1=(-1)2a1;④同理可得:an=(-1)n-1a1;故答案为①斜边和一条直角边分别相等的两个直角三角形全等②(﹣1)a1;③(-1)2a1;④

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论