版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第4课时:整式的加减⑴
教学内容:
教科书第63—64页,2.2整式的加减:1.同类项。
教学目标和要求:
1.理解同类项的概念,在具体情景中,认识同类项。
2.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和
合作交流的能力。
3.初步体会数学与人类生活的密切联系。
教学重点和难点:
重点:理解同类项的概念。难点:根据同类项的概念在多项式中找同类项。
教学方法:
分层次教学,讲授、练习相结合。
教学过程:
一、复习引入:
1、创设问题情境
⑴、5个人+8个人=
⑵、5只羊+8只羊=
⑶、5个人+8只羊=
(数学教学要紧密联系学生的生活实际、学习实际,这是新课程标准所赋予的任务。学
生尝试按种类、颜色等多种方法进行分类,一方面可提供学生主动参与的机会,把学生的注
意力和思维活动调节到积极状态;另一方面可培养学生思维的灵活性,同时体现分类的思想
方法。)
2、观察下列各单项式,把你认为相同类型的式子归为一类。
8x2y,—mi?,5a,—x2y,7mn2,,9a,~,0,0.4mn2,j,2xy2«
由学生小组讨论后,按不同标准进行多种分类,教师巡视后把不同的分类方法投影显示。
要求学生观察归为一类的式子,思考它们有什么共同的特征?
请学生说出各自的分类标准,并且肯定每一位学生按不同标准进行的分类。
(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激
发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体
现课堂教学的开放性。)
二、讲授新课:
1.同类项的定义:
我们常常把具有相同特征的事物归为一类。8x2y与一x2y可以归为一类,2xy?与一年
可以归为一类,一mrP、7mn2与0.4mn2可以归为一类,5。与9〃可以归为一类,还有之、0
8
与今也可以归为一类。8x2y与一x2y只有系数不同,各自所含的字母都是x、y,并且x的指
数都是2,y的指数都是1;同样地,2xy2与一与•也只有系数不同,各自所含的字母都是X、
y,并且x的指数都是1,y的指数都是2。
像这样,所含字母相同,并且相同字母的指数也分别相等的项叫做
同类项(similarterms)o另外,所有的常数项都是同类项。比如,前面提到的黄
O
0与上也是同类项。
9
通过特征的讲述,选择所含字母相同,并且相同字母的指数也分别相等的项作为研究对
象,并称它们为同类项。(板书课题:同类项。)
(教师为了让学生理解同类项概念,可设问同类项必须满足什么条件,让学生归纳总结。)
板书由学生归纳总结得出的同类项概念以及所有的常数项都是同类项。
2.例题:
例1:判断下列说法是否正确,正确地在括号内打“J”,错误的打“X”。
(l)3x与3mx是同类项。()(2)2“b与一5ab是同类项。()
(3)3x2y与一gyx2是同类项。()(4)5ab?与一2ab2c是同类项。()
(5)23与32是同类项。()
(这组判断题能使学生清楚地理解同类项的概念,其中第(3)题满足同类项的条件,只要
运用乘法交换律即可;第(5)题两个都是常数项属于同类项。一部分学生可能会单看指数不
同,误认为不是同类项。)
例2:游戏:
规则:一学生说出一个单项式后,指定一位同学回答它的两个同类项.
要求出题同学尽可能使自己的题目与众不同。
可请回答正确的同学向大家介绍写一个单项式同类项的经验,从而揭示同类项的本质特
征,透彻理解同类项的概念。
(学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的程式化做法,
并由编题学生指定某位同学回答,可使课堂气氛活跃,学生透彻理解知识,这种形式适合初
中生的年龄特征。学生通过一定的尝试后,能得出只要改变单项式的系数,即可得到其同类
项,实际是抓住了同类项概念中的两个“相同”,从而深刻揭示了概念的内涵。)
例3:指出下列多项式中的同类项:
⑴3x-2y+1+3y-2x—5;(2)3x2y—2xy2+gxy2—gyx2»
解:(l)3x与一2x是同类项,-2y与3y是同类项,1与-5是同类项。
(2)3x2y与一称丫*?是同类项,-2xy2与;xy?是同类项。
例4:k取何值时,3xky与一x?y是同类项?
解:要使3xky与一x2y是同类项,这两项中x的次数必须相等,即k=2。所以当k=2时,
3xky与一x2y是同类项。
例5:若把(s+t)、(s-t)分别看作一个整体,指出下面式子中的同类项。
(l).i(s+t)--(s-t)--(s+t)+-(s-t);(2)2(s-1)+3(s-1)2-5(s-1)-8(s-1)2+s
3546
-to
2
解:略。
(组织学生口头回答上面三个例题,例3多项式中的同类项可由教师标出不同的下划线,
并运用投影仪打出书面解答,为合并同类项作准备。例4让学生明确同类项中相同字母的指
数也相同。例5必须把(s—t)、(s+t)分别看作一个整体。)
(通过变式训练,可进一步明晰“同类项”的意义,在自主探索和合作交流的过程中真
正理解和掌握基本的数学知识与技能、提高识别能力。)
6.课堂练习:请写出2ab2c3的一个同类项.你能写出多少个?它本身是自己的同类项吗?
(学生先在课本上解答,再回答,若有错误请其他同学及时纠正。)
三、课堂小结:
①理解同类项的概念,会在多项式中找出同类项,会写出一个单项式的同类项,会判断
同类项。
②这堂课运用到分类思想和整体思想等数学思想方法。
③学习同类项的用途是为了简化多项式,为下一课的合并同类项打下基础。
(课堂小结不仅仅是知识点的罗列,应使知识条理化、系统化,应上升到数学思想方法
的总结与运用.采用学生相互补充完善,教师适时点拨的课堂小结方式,可训练学生的归纳
能力和表达能力,提高学生学习的积极性和主动性。)
四、课堂作业:若2amb2m+3n与a2n、b8的和仍是一个单项式,则山与n的值分别是
板书设计:
同类项
1.同类项的定义:2.例:......例:
学生练习:
教学后记:
建立在学生的认知发展水平上,从学生已有的生活经验出发,通过小组讨论,把一些实
物进行分类,从而引出同类项这个概念,并通过练习、游戏、合作交流等学习活动让学生更
清楚地认识同类项。在整堂课的教学活动中充分体现学生的主体性,向学生提供充分参与数
学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与
技能,培养学生动手、动口、动脑的能力和学生的合作交流能力。
第5课时:整式的加减(2)
教学内容:
教科书第64—66页,2.2整式的加减:2.合并同类项。
教学目的和要求:
1.理解合并同类项的概念,掌握合并同类项的法则。
2.经历概念的形成过程和法则的探究过程,培养观察、归纳、概括能力,发展应用意
识。
3
3.渗透分类和类比的思想方法。
4.在独立思考的基础上,积极参与讨论,敢于发表自己的观点,从交流中获益。
教学重点和难点:
重点:正确合并同类项。难点:找出同类项并正确的合并。
教学方法:
分层次教学,讲授、练习相结合。
教学过程:
一、复习引入:
为了搞好班会活动,李明和张强去购买一些水笔和软面抄作为奖品。他们首先购买了
15本软面抄和20支水笔,经过预算,发现这么多奖品不够用,然后他们又去购买了6本软
面抄和5支水笔。问:
①他们两次共买了多少本软面抄和多少支水笔?
②若设软面抄的单价为每本x元,水笔的单价为每支y元,则这次活动他们支出的总
金额是多少元?
(知识的呈现过程尽量与学生已有的生活实际密切联系,从而能提高学生从事探索活动
的投入程度和积极性,激发学生的求知欲。)
二、讲授新课:
1.合并同类项的定义:
(学生讨论问题2)可根据购买的时间次序列出代数式,也可根据购买物品的种类列出代
数式,再运用加法的交换律与结合律将同类项结合在一起,将它们合并起来,化简整个多项
式,所的结果都为(21x+25y)元。
由此可得:把多项式中的同类项合并成一项,叫做合并同类项。(板
书:合并同类项。)
2.例题:
例1:找出多项式3x?y—4xy2-3+5x?y+2xy2+5种的同类项,并合并同类项。
解原式=3x2y+5x2y-4xy2+2xy2+5-3=(3+5)X2J+(-4+2)xy2+(5-3)=Sx2y-2xy2+2
根据以上合并同类项的实例,让学生讨论归纳,得出合并同类项的法则:
把同类项的系数相加,所得的结果作为系数,字母和字母指数保
持不变。
例2:下列各题合并同类项的结果对不对?若不对,请改正。
(l)2x2+3X2=5X4;(2)3x+2y=5xy;(3)7x2—3x2=4;(4)9。2b—9ba2=0o
(通过这一组题的训练,进一步熟悉法则。)
例3:合并下列多项式中的同类项:
①2〃2b—342b+0.5/b;②6?—02b+ab2+crb—ab2+b3;③5(x+y)3—2(x—y)4—2(x+y)3+
(y—x)4o
(用不同的记号标出各同类项,会减少运算错误,当然熟练后可以不再标出。其中第⑶
题应把(x+y)、(x—y)看作一个整体,特别注意(x—y)2n=(y-x)27n为正整数。)
4
解:①2a2力-3。2万+g02b=(2-3+g426=_12力。
22223222233
②。3-ab+ab+ab-ab+力3=〃3+ft(-fl/>+«*)+(Jft-«6)=«+ft«
③原式=5(x+y)3—2(x—y)4—2(x+y/+(x—y)4=3(x+y)3—(x—y)4«
例4:求多项式3x?+4x—2x2—x+x?—3x—1的值,其中x=-3。
解:3x2+4x-2x2-x+x2-3x-l=(3-2+l)x2+(4-l-3)x-l=2x2-1,当X=—3时,原式
=2x(-3尸-1=17。
试一试:把X=-3直接代入例4这个多项式,可以求出它的值吗?与上面的解法比较一下,
哪个解法更简便?
(两种方法。通过比较两种方法,使学生认识到,在求多项式的值时,常常先合并同类项,
再求值,这样比较简便。)
6.课堂练习:课本p66:1,2,3。
三、课堂小结:
①要牢记法则,熟练正确的合并同类项,以防止2x2+3x2=5x4的错误。
②从实际问题中类比概括得出合并同类项法则,并能运用法则,正确的合并同类项。
四、课堂作业:课本p71:1
板书设计:
《合并同类项》
1.合并同类项的定义:2.例:....例:........
学生练习:
教学后记:
数学教学要紧密联系学生的生活实际,本节课从学生已有的知识和经验出发,从实际问
题入手,引出合并同类项的概念。通过独立思考、讨论交流等方式归纳出合并同类项的法则,
通过例题教学、练习等方式巩固相关知识,发展应用部分。教学中应激发学生主动参与的学
习动机,培养学生思维的灵活性,体现分类、类比等数学思想方法。
第6课时:整式的加减(3)
教学内容:
课本第66页至第68页.
教学目标
1.知识与技能
能运用运算律探究去括号法则,并且利用去括号法则将整式化简.
2.过程与方法
经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法
则,培养学生观察、分析、归纳能力.
3.情感态度与价值观
培养学生主动探究、合作交流的意识,严谨治学的学习态度.
5
重、难点与关键
1.重点:去括号法则,准确应用法则将整式化简.
2.难点:括号前面是“一”号去括号时,括号内各项变号容易产生错误.
3.关键:准确理解去括号法则.
教学过程
一、新授
利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那
么该怎样化简呢?
现在我们来看本章引言中的问题(3):
在格尔木到拉萨路段,如果列车通过冻土地段要t小时,•那么它通过非冻土地段的时
间为(t-0.5)小时,于是,冻土地段的路程为100t千米,•非冻土地段的路程为120(t-
0.5)千米,因此,这段铁路全长为
100t+120(t-0.5)千米①
冻土地段与非冻土地段相差
100t-120(t-0.5)千米②
上面的式子①、②都带有括号,它们应如何化简?
思路点拨:教师引导,启发学生类比数的运算,利用分配律.学生练习、交流后,教师
归纳:
利用分配律,可以去括号,合并同类项,得:
l(X)t+120(t-0.5)=100t+120t+120x(-0.5)=220t-60
100t-120(t-0.5)=100t-120t-120x(-0.5)=-20t+60
我们知道,化简带有括号的整式,首先应先去括号.
上面两式去括号部分变形分别为:
+120(t-0.5)=+120t-60(3)-120(t-0.5)=-120+60④
比较③、④两式,你能发现去括号时符号变化的规律吗?
思路点拨:鼓励学生通过观察,试用自己的语言叙述去括号法则,然后教师板书(或用
屏幕)展示:
如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;
如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.
特别地,+(x-3)与一(x—3)可以分别看作1与一1分别乘(x—3).
利用分配律,可以将式子中的括号去掉,得:
+(x-3)=x—3(括号没了,括号内的每一项都没有变号)
-(x-3)=-x+3(括号没了,括号内的每一项都改变了符号)
去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要
不变,则谁也不变;另外,括号内原有几项去掉括号后仍有几项.
二、范例学习
例1.化简下列各式:
(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).
思路点拨:讲解时,先让学生判定是哪种类型的去括号,去括号后,要不要变号,括号
内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.为了防止错误,题(2)
中一3(a2-2b),先把3乘到括号内,然后再去括号.
解答过程按课本,可由学生口述,教师板书.
6
例2.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,•两船在静水中的速
度都是50千米/时,水流速度是a千米/时.
(1)2小时后两船相距多远?
(2)2小时后甲船比乙船多航行多少千米?
教师操作投影仪,展示例2,学生思考、小组交流,寻求解答思路.
思路点拨:根据船顺水航行的速度=船在静水中的速度+水流速度,•船逆水航行速度=
船在静水中行驶速度一水流速度.因此,甲船速度为(50+a)千米/时,乙船速度为(50—a)
千米/时,2小时后,甲船行程为2(50+a)千米,乙船行程为(50—a)千米.•两船从同一
洪口同时出发反向而行,所以两船相距等于甲、乙两船行程之和.
解答过程按课本.
去括号时强调:括号内每一项都要乘以2,括号前是负因数时,去掉括号后,•括号内
每一项都要变号.为了防止出错,可以先用分配律将数字2•与括号内的各项相乘,然后再
去括号,熟练后,再省去这一步,直接去括号.
三、巩固练习
1.课本第68页练习1、2题.
2.计算:5xy2—[3xy2—(4xy2—2x2y)]+2x2y—xy2.[5xy2]
思路点拨:一般地,先去小括号,再去中括号.
四、课堂小结
去括号是代数式变形中的一种常用方法,去括号时,特别是括号前面是“一”号时,括号
连同括号前面的“一”号去掉,括号里的各项都改变符号.去括号规律可以简单记为“一”变
“十”不变,要变全都变.当括号前带有数字因数时,这个数字要乘以括号内的每一项,切勿
漏乘某些项.
学生作总结后教师强调要求大家应熟记法则,并能根据法则进行去括号运算。法则顺口
溜:去括号,看符号:是“+”号,不变号;是“一”号,全变号。
五、作业布置
1.课本第71页习题2.2第2、3、5、8题.
板书设计:
《去括号》
1.去括号的法则:2.例:......例:........
学生练习:
教学后记:
①通过回顾已经学过的知识,通过观察、比较,得到了整式的去括号法则。这样的通过
实例,设计起点低,学生学起来更自然,对新知识更容易接受。
②在总结出去括号法则后,又给出了一个顺口溜,这是考虑到学生年龄小,顺口溜更便
于记忆,而且也增加了学习的情趣。
③安排了例1到例5的一个组题,进行由浅入深、循序渐进的训练,以使学生更好地全
方位地掌握去括号法则另夕卜,还安排了某些变式训练,既能让学生进一步熟悉去括号法则,
又训练了他们的逆向思维。
7
第7课时:整式的加减(4)
教学内容:课本没有“添括号”内容,整式的加减过程中要用到。
教学目标和要求:
1.使学生初步掌握添括号法则。
2.会运用添括号法则进行多项式变项。
3.理解“去括号”与“添括号”的辩证关系。
教学重点和难点:
重点:添括号法则;法则的应用。
难点:添上“一”号和括号,括到括号里的各项全变号。
教学方法:
分层次教学,讲授、练习相结合。
教学过程:
一、复习引入:
练习:
(l)(2x—3y)+(5x+4y);(2)(8a—7b)—(4a—5b);
(3)。—(2a+b)+2(a—2b);(4)3(5x+4)—(3x—5);
(6)—5x2+(5x—8x2)—(―12X2+4X)+|;
(5)(8x—3y)—(4x+3y—z)+2z;
(7)2—(1+x)+(l+x+x2—x2);(8)3/+/—(2a2—2a)+(3a—a2);
(9)2«—3b+14a—(3a—b)];(10)3b—2c—[—4a+(c+3b)]+c。
二、讲授新课:
1.添括号的法则:
①观察:分别把前面去括号的(1)、(2)两个等式中等号的两边对调,并观察对调后两个
等式中括号和各项符号的变化,你能得出什么结论?
符号均没有变化符号均发生了变化随着括号的添
加,括号内各项
a+b+c=Q+(b+c).a-b-c=Q-(b+c).的符号有什么变
IfI1化规律?
②通过观察与分析,可以得到添括号法则:
所添括号前面是号,括到括号里的各项都不变符号;
所添括号前面是“一”号,括到括号里的各项都改变符号。
2.例题:
例1:做一做:在括号内填入适当的项:
(l)x2—x+1=X2—();(2)2x2—3x—1=2x2+();
8
(3)(a—b)—(c—d)=a—()。(4)(a+b—c)(a—b+c)=[〃+()][a—()]
例2:用简便方法计算:
(l)214a+47a+53a;(2)214〃-39。-61”.
解:(l)214a+47a+53a=214a+(47a+53a)=214a+100a=314”。
(2)214a—39a—61a=214〃一(39〃+61a)=214a—100«=114〃。
例3:按要求,将多项式3a—2b+c添上括号:
(1)把它放在前面带有“+”号的括号里;(2)把它放在前面带有“一”号的括号里
此题是添括号法则的直接应用,为了更加明确起见,在解题时,先写出
3a—2b+c=+()=—()的形式,再让学生往里填空,特别注意,添“一”号和括号,括到括号
里的各项全变号。
解:3a—2b+c=+(3a—2b+c)=—(—3a
紧接着提问学生:如何检查添括号对不对呢?引导学生观察、分析,直至说出可有两种
方法:一是直接利用添括号法则检查,一是从结果出发,利用去括号法则检查肯定学生的
回答,
并进一步指出所谓用去括号法则检查添括号,正如同用加法检验减法,用乘法检验除法一样
例4:按下列要求,将多项式x3—5x2—4x+9的后两项用()括起来:
⑴括号前面带有“+”号;(2)括号前面带有“一”号
解:(l)x3—5x2—4x+9=x3—5x2+(—4x+9);
(2)x3—5x2—4x+9=x3—5x2—(4x—9)»
说明:
①解此题时,首先要让学生确认x3—5x2—4x+9的后两项是什么一是一4x、+9,要特
别注意每一项都包括前面的符号。
②再次强调添的是什么——是()及它前面的“+”或"一”。
例5:按要求将2x?+3x—6:
(1)写成一个单项式与一个二项式的和;(2)写成一个单项式与一个二项式的差•
此题(1)、(2)小题的答案都不止一种形式,因此要让学先讨论1分钟再举手发言。通过此题
可渗透一题多解的立意。
解:⑴2x2+3x—6=2x2+(3x—6)=3x+(2x2—6)=—6+(2x2+3x);
(2)2X2+3X-6=2x2-(-3x+6)=3x—(—2x2+6)=—6—(—2x2—3x)。
三、课堂小结:
1、这两节课我们学习了去括号法则和添括号法则,这两个法则在整式变形中经常用到,
而利用它们进行整式变形的前提是原来整式的值不变。
2、去、添括号时,一定要注意括号前的符号,这里括号里各项变不变号的依据。法则
顺口溜:添括号,看符号:是“+”号,不变号;是“一”号,全变号。
板书设计:
添括号
1.添括号的法则:2.例:......例:
学生练习:
教学后记:
①去括号和添括号是本章的难点,而添括号难于去括号,添“负号和括号“又难于添”正
号和括号”,因此,本章的最难点在于为了让学生学起来更觉自然,降低难度,在引入部分,
仍然采用了“以旧弓I新”的办法,通过等式的性质,仿照去括号法则,归纳、概括出添括号法
则。
②为了让学生充分地意识到,添的不仅仅是括号,还包括前面的正号或负号,因此,在
总结法则时,与课本略有不同:添上号和括号,括到括号里的各项都不变号;添上号
和括号,括到括号里的各项都改变符号。以更利于学生将括号及括号前的符号看成一个整体。
③在教学中,要使学生认识到,添括号和去括号是两个相反的过程,因此可以用来互相
检验,就如同加法与减法,乘法与除法的关系一样。这样可使知识前后呼应、浑然一体。
第8课时:整式的加减(5)
教学内容:
教科书第68—70页,2.2整式的加减:4.整式的加减。
教学目的和要求:
1.让学生从实际背景中去体会进行整式的加减的必要性,并能灵活运用整式的加减的
步骤进行运算。
2.培养学生的观察、分析、归纳、总结以及概括能力。
3.认识到数学是解决实际问题和进行交流的重要工具。
教学重点和难点:
重点:整式的加减。
难点:总结出整式的加减的一般步骤。
教学方法:
分层次教学,讲授、练习相结合。
教学过程:
一、复习引入:
1.做一做。
某学生合唱团出场时第一排站了n名,从第二排起每一排都比前一排多一人,一共站了
四排,则该合唱团一共有多少名学生参加?
②提问:以上答案进一步化简吗?如何化简?我们进行了哪些运算?(让学生自然地认
2.练习:化简:识到整式的化简
之实质上就是整式
的加减。.
10-------------------------/
(1)(x+y)一(2x—3y)⑵2(a?-2bj-3(2tz2+b2)
提问:以上化简实际上进行了哪些运算?怎样进行整式的加减运算?
(从实际问题引入,让学生经历一个实际背景,体会进行整式的加减运算的必要性,在通过复
习、练习,为学生概括出整式的加减的一般步骤作必要的准备)
二、讲授新课:
1.整式的加减:教师概括(引导学生归纳总结出整式的加减的步骤)
不难发现,去括号和合并同类项是整式加减的基础。因此,整式加减的一般步骤可以总
结为:
(1)如果有括号,那么先去括号。(2)如果有同类项,再合并同
类项。
2.例题:
例1:求整式X?—7x—2与-2X2+4X—1的差。
解:原式=(X2—7x—2)—(―2x2+4x—1)=X2—7x—2+2x2—4x+l=3x2—1lx—1.)
(本例应先列式,列式时注意给两个多项式都加上括号,后进行整式的加减)
练习:一个多项式加上一5x2—4x—3与一X?—3x,求这个多项式。
例2:计算:-2y3+(3xy2—x?y)—2(xy2—y3)。
22
解:原式=—2y3+3xy2—x?y—2xy?+2y3)=xy—xyo
(本例让学生体会整式的加减实质是去括号、合并同类项这两个知识的综合,有利于将新知
识转化为已有的知识,使学生的知识结构发生更新)
例3:化简求值:(2x3—xyz)—2(x3—y3+xyz)+(xyz—2y3),其中x=l,y=2,z=—3。
解:原式=2x3_xyz_2x3+2y3_2xyz+xyz_2y3=_2xyz。
当x=l,y=2,z=—3时,原式=-2X1X2X(—3)=12。
(本例让学生经历求代数式的值时,应先考虑将代数式化简,在代入求值的过程,体会先化
简在求值的优越性)
3.课堂练习:课本p70:1,2,3。
三、课堂小结:
1.整式的加减实际上就是去括号、合并同类项这两个知识的综合。
2.整式的加减的一般步骤:
①如果有括号,那么先算括号。②如果有同类项,则合并同类项。
3.求多项式的值,一般先将多项式化简再代入求值,这样使计算简便。
4.数学是解决实际问题的重要工具。
四、课堂作业:课本p71—72:6,7,9。
板书设计:
《整式的加减》
1.整式的加减:2.例:....例:.........
学生练习:
教学后记:
通过实际问题,让学生经历一个实际背景,去体会进行整式的加减的必要性。通过“去
括号、合并同类项”习题的复习归纳总结出整式的加减的一般步骤,培养学生的观察、分析、
归纳和概括的能力,掌握知识的发生发展过程,理解整式的加减实质就是去括号、合并同类
项。教学过程中由学生小组讨论概括出整式的加减的一般步骤,然后出示例题,由学生解答,
同时采取由学生出题,其他同学抢答等形式,来提高学生的学习兴趣,充分发挥他们的主观
能动性,提高课堂教学效益。
第9课时:复习课
教学内容:
教科书第76页,整式的加减单元复习。
教学目的和要求:
1.使学生对本章内容的认识更全面、更系统化。
2.进一步加深学生对本章基础知识的理解以及基本技能(主要是计算)的掌握。
3.通过复习,培养学生主动分析问题的习惯。
教学重点和难点:
重点:本章基础知识的归纳、总结;基础知识的运用;整式的加减运算。
难点:本章基础知识的归纳、总结;基础知识的运用;整式的加减运算。
教学方法:
分层次教学,讲授、练习相结合。
教学过程:
一、复习引入:
1.主要概念:
(1)关于单项式,你都知道什么?
(2)关于多项式,你又知道什么?
引导学生积极回答所提问题,通过几名同学的回答,复习单项式的定义、单项式的系数、
次数的定义,多项式的定义以及多项式的项、同类项、次数、升降累排列等定义。
(3)什么叫整式?
在学生回答的基础上,进行归纳、总结,用投影演示:让学生回顾总结,
形成知识体系。
J单项式(定义系数次数
整式]多项式(项同类项次薮降幕排列)
2.主要法则:
①提问:在本章中,我们学习了哪几个重要的法则?分别如何叙述?
②在学生回答的基础上,进行归纳总结:
12
J去(添)括号
整式的加减[合并同类项。
二、讲授新课:
1.例题:
例1:找出下列代数式中的单项式、多项式和整式。
f+z,4xy,―,x2+x+-,0,-------2.01X105
3'。2xX2-2X
2
解:单项式有4xy,皇,0,m,-2.01X105;多项式有六匕;
2
整式有4xy,亨,0,m,-2.01x105,*+;+z。
此题由学生口答,并说明理由。通过此题,进一步加深学生对于单项式、多项式、整式
的定义的理解。
例2:指出下列单项式的系数、次数:ab,-X2,lxy\士电。
53
解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 玩具用服装商业机会挖掘与战略布局策略研究报告
- 牙科用导电漆商业机会挖掘与战略布局策略研究报告
- 国际公法服务行业营销策略方案
- 蜂箱用巢础市场分析及投资价值研究报告
- 带有时钟的收音机产品供应链分析
- 安全网产业链招商引资的调研报告
- 废旧金属回收利用行业相关项目经营管理报告
- 卫星传输带宽出租行业营销策略方案
- 电路测试仪产品供应链分析
- 药用蜂胶商业机会挖掘与战略布局策略研究报告
- 第二单元大单元教学设计 2023-2024学年统编版高中语文必修上册
- 2023年-2024年《高等教育管理学》考试题库(含答案)
- 商业银行贷款风险提示
- 2024年3月25日公安部遴选面试真题及解析
- 工具快换装置配置介绍
- 2024全国职业院校技能大赛ZZ059安全保卫赛项规程+赛题
- 青岛版科学五年级上册全册练习题(含答案)
- 宿舍消防安全知识课件
- 物流系统网络运输路线规划设计
- 职业规划指导讲座
- 化疗药物使用及护理要点
评论
0/150
提交评论