版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
11.2.1三角形的内角第十一章三角形11.2
与三角形有关的角第1课时
三角形的内角和2.会运用三角形内角和定理进行计算.(难点)1.会用平行线的性质与平角的定义证明三角形内角和等于180°.(重点)学习目标新课导入教学目标教学重点新课导入讲授新课典例精讲归纳总结1知识点三角形内角和定理问题1
在小学我们已经知道任意一个三角形三个内角的和等于180°,你还记得是怎么发现这个结论的吗?请大家利用手中的三角形纸片进行探究.讲授新课方法:度量、剪拼图、折叠BBCCAAABBC讲授新课AABBCABBCC讲授新课ABC讲授新课
在纸上任意画一个三角形,将它的内角剪下拼合在一起,就得到一个平角.从这个操作过程中,你能发现证明的思路吗?◎探究讲授新课追问1
在下图中,∠B和∠C
分别拼在∠A
的左右,三个角合起来形成一个平角,出现了一条过点A的直线l,直线l
与边BC
有什么位置关系?直线l与边BC
平行.BBCCAl讲授新课追问2
在操作过程中,我们发现了与边BC
平行的直线l,由此,你又能受到什么启发?你能发现证明“三角形内角和等于180°”的思路吗?通过添加与边BC平行的辅助线l,利用平行线的性质和平角的定义即可证明结论.BBCCAl讲授新课追问3结合下图,你能写出已知、求证和证明吗?已知:△ABC.求证:∠A+∠B+∠C=180°.ABC24153
l讲授新课
如图,过点A作直线l,使l//BC.∵l//BC,∴∠2=∠4(两直线平行,内错角相等).
同理∠3=∠5.∵∠1,∠4,∠5组成平角,∴∠1+∠4+∠5=180°(平角定义).∴∠1+∠2+∠3=180°(等量代换).以上我们就证明了任意一个三角形的内角和都等于180°,得到如下定理:三角形内角和定理三角形三个内角的和等于180°.证明:讲授新课知识要点在这里,为了证明的需要,在原来的图形上添画的线叫做辅助线.在平面几何里,辅助线通常画成虚线.思路总结为了证明三个角的和为180°,转化为一个平角或同旁内角互补等,这种转化思想是数学中的常用方法.作辅助线讲授新课1如图,一种滑翔伞的形状是左右对称的四边形ABCD,其中∠A=150°,∠B=∠D=40°.求∠C的度数.解:∠C=180°×2-(40°+40°+150°)=130°.讲授新课练一练在△ABC中,∠B=40°,∠C=80°,则∠A的度数为(
)A.30°
B.40°
C.50°
D.60°2D讲授新课在△ABC中,已知∠B是∠A的2倍,∠C比∠A大20°,则∠A等于(
)A.40°B.60°C.80°D.90°3A讲授新课
如图,在△ABC中,∠BAC=40°,∠B=75°,AD是△ABC的角平分线,求∠ADB的度数.ABCD解:由∠BAC=40°,AD是△ABC的角平分线,得∠BAD=∠BAC=20°.在△ABD中,∠ADB=180°-∠B-∠BAD=180°-75°-20°=85°.2知识点三角形内角和的应用讲授新课例题1【变式题】如图,CD是∠ACB的平分线,DE∥BC,∠A=50°,∠B=70°,求∠EDC,∠BDC的度数.解:∵∠A=50°,∠B=70°,∴∠ACB=180°-∠A-∠B=60°.∵CD是∠ACB的平分线,∴∠BCD=∠ACB=30°.∵DE∥BC,∴∠EDC=∠BCD=30°,在△BDC中,∠BDC=180°-∠B-∠BCD=80°.讲授新课
如图,△ABC中,D在BC的延长线上,过D作DE⊥AB于E,交AC于F.已知∠A=30°,∠FCD=80°,求∠D.解:∵DE⊥AB,∴∠FEA=90°.∵在△AEF中,∠FEA=90°,∠A=30°,∴∠AFE=180°-∠FEA-∠A=60°.又∵∠CFD=∠AFE,∴∠CFD=60°.∴在△CDF中,∠CFD=60°,∠FCD=80°,∠D=180°-∠CFD-∠FCD=40°.例题2讲授新课基本图形由三角形的内角和定理易得∠A+∠B=∠C+∠D.由三角形的内角和定理易得∠1+∠2=∠3+∠4.总结归纳4讲授新课
在△ABC
中,∠A
的度数是∠B
的度数的3倍,∠C
比∠B
大15°,求∠A,∠B,∠C的度数.解:设∠B为x°,则∠A为(3x)°,∠C为(x+
15)°,从而有3x+
x+(x+
15)=
180.解得x=
33.所以3x=
99
,x+
15
=
48.答:∠A,∠B,∠C的度数分别为99°,
33°,48°.几何问题借助方程来解.这是一个重要的数学思想.讲授新课例题3【变式题】在△ABC中,∠A=∠B=∠ACB,CD是△ABC的高,CE是∠ACB的平分线,求∠DCE的度数.解析:根据已知条件用∠A表示出∠B和∠ACB,利用三角形的内角和求出∠A,再求出∠ACB,∠ACD,最后根据角平分线的定义求出∠ACE即可求得∠DCE的度数.比例关系可考虑用方程思想求角度.讲授新课解:∵∠A=∠B=∠ACB,设∠A=x,∴∠B=2x,∠ACB=3x.∵∠A+∠B+∠ACB=180°,∴x+2x+3x=180°,得x=30°,∴∠A=30°,∠ACB=90°.∵CD是△ABC的高,∴∠ADC=90°,∴∠ACD=180°-90°-30°=60°.∵CE是∠ACB的平分线,∴∠ACE=×90°=45°,∴∠DCE=∠ACD-∠ACE=60°-45°=15°.讲授新课②在△ABC中,∠A:∠B:∠C=1:2:3,则△ABC是
_________三角形.
练一练:①在△ABC中,∠A=35°,∠B=43°,则∠
C=.
③在△ABC中,∠A=∠B+10°,∠C=∠A+10°,则∠A=
,∠B=
,∠C=
.102°直角60°50°70°讲授新课北.AD北.CB.东E例4
如图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西40°方向.从B岛看A,C两岛的视角∠ABC是多少度?从C岛看A、B两岛的视角∠ACB是多少度?三角形的内角和定理也常常用在实际问题中.讲授新课解:∠CAB=∠BAD-∠CAD=80°-50°=30°.由AD//BE,得∠BAD+∠ABE=180°.所以∠ABE=180°-∠BAD=180°-80°=100°,∠ABC=∠ABE-∠EBC=100°-40°=60°.在△ABC中,∠ACB=180°-∠ABC-∠CAB=180°-60°-30°
=90°,答:从B岛看A,C两岛的视角∠ABC是60°,从C岛看A,B两岛的视角∠ACB是90°.北.AD北.CB.东E讲授新课【变式题】如图,B岛在A岛的南偏西40°方向,C岛在A岛的南偏东15°方向,C岛在B岛的北偏东80°方向,求从C岛看A,B两岛的视角∠ACB的度数.解:如图,由题意得BE∥AD,∠BAD=40°,∠CAD=15°,∠EBC=80°,∴∠EBA=∠BAD=40°,∠BAC=40°+15°=55°,∴∠CBA=∠EBC-∠EBA=80°-40°=40°,∴∠ACB=180°-∠BAC-∠ABC=180°-55°-40°=85°.DE讲授新课当堂练习当堂反馈即学即用1.求出下列各图中的x值.x=70x=60x=30x=50当堂练习2.如图,则∠1+∠2+∠3+∠4=___________.BACD4132E40°(280°当堂练习3.如图,四边形ABCD中,点E在BC上,∠A+∠ADE=180°,∠B=78°,∠C=60°,求∠EDC的度数.解:∵∠A+∠ADE=180°,∴AB∥DE,∴∠CED=∠B=78°.又∵∠C=60°,∴∠EDC=180°-(∠CED+∠C)=180°-(78°+60°)=42°.当堂练习4.如图,在△ABC中,∠B=42°,∠C=78°,AD平分∠BAC.求∠ADC的度数.解:∵∠B=42°,∠C=78°,∴∠BAC=180°-∠B-∠C=60°.∵AD平分∠BAC,∴∠CAD=∠BAC=30°,∴∠ADC=180°-∠B-∠CAD=72°.当堂练习5.如图,在△ABC中,BP平分∠ABC,CP平分∠ACB,若∠BAC=60°,求∠BPC的度数.解:∵△ABC中,∠A=60°,∴∠ABC+∠ACB=120°.∵BP平分∠ABC,CP平分∠ACB,∴∠PBC+∠PCB=(∠ABC+∠ACB)=60°.∵∠PBC+∠PCB+∠BPC=180°,∴∠BPC=180°-60°=120°.拓展当堂练习【变式题】你能直接写出∠BPC与∠A
之间
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 有害生物防治合同协议书范本
- 服装交易合同范本
- 演出服务合同版
- 香蒲创意美术课件
- 立体说课培训
- 水果购销合同电子版
- 《中医护理诊断程序》课件
- 工程项目的合同管理与审计(2024版)
- 公司为员工租房协议范本
- 康复运动疗法牵引治疗
- 《饮料对人体的危害》课件
- 2024-2030年中国腐乳行业发展趋势及营销模式分析报告
- 手术室专科习题及答案
- 专题04 任务型阅读10道
- 2024年山东省公务员考试《行测》真题及答案解析
- 期中测试卷(1~4单元)(试题)2024-2025学年五年级上册数学北师大版
- 教师课题结题资料汇编培训
- 北师大版六年级上册数学期末考试试卷带答案
- 餐饮服务课件 学习任务3 餐巾折花技能(4)-餐巾折花综合实训
- 22秋军事理论学习通超星期末考试答案章节答案2024年
- 环保设备智能监控系统开发合同
评论
0/150
提交评论