版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省安丘市、诸城市、五莲县、兰山区2025届统一招生考试二月调考仿真模拟数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若实数、满足,则的最小值是()A. B. C. D.2.设,若函数在区间上有三个零点,则实数的取值范围是()A. B. C. D.3.已知函数满足,设,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.若θ是第二象限角且sinθ=,则=A. B. C. D.5.已知双曲线,点是直线上任意一点,若圆与双曲线的右支没有公共点,则双曲线的离心率取值范围是().A. B. C. D.6.下列函数中,在区间上为减函数的是()A. B. C. D.7.设,满足,则的取值范围是()A. B. C. D.8.下列与的终边相同的角的表达式中正确的是()A.2kπ+45°(k∈Z) B.k·360°+π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+(k∈Z)9.已知数列是公差为的等差数列,且成等比数列,则()A.4 B.3 C.2 D.110.设全集U=R,集合,则()A.{x|-1<x<4} B.{x|-4<x<1} C.{x|-1≤x≤4} D.{x|-4≤x≤1}11.过抛物线的焦点F作两条互相垂直的弦AB,CD,设P为抛物线上的一动点,,若,则的最小值是()A.1 B.2 C.3 D.412.已知、是双曲线的左右焦点,过点与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点,若点在以线段为直径的圆外,则双曲线离心率的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.五声音阶是中国古乐基本音阶,故有成语“五音不全”.中国古乐中的五声音阶依次为:宫、商、角、徵、羽,如果把这五个音阶全用上,排成一个五个音阶的音序,且要求宫、羽两音阶不相邻且在角音阶的同侧,可排成______种不同的音序.14.已知椭圆,,若椭圆上存在点使得为等边三角形(为原点),则椭圆的离心率为_________.15.已知为椭圆的左、右焦点,点在椭圆上移动时,的内心的轨迹方程为__________.16.已知满足且目标函数的最大值为7,最小值为1,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足,且,,成等比数列.(1)求证:数列是等差数列,并求数列的通项公式;(2)记数列的前n项和为,,求数列的前n项和.18.(12分)设函数,直线与函数图象相邻两交点的距离为.(Ⅰ)求的值;(Ⅱ)在中,角所对的边分别是,若点是函数图象的一个对称中心,且,求面积的最大值.19.(12分)已知函数.(1)若,解关于的不等式;(2)若当时,恒成立,求实数的取值范围.20.(12分)若函数在处有极值,且,则称为函数的“F点”.(1)设函数().①当时,求函数的极值;②若函数存在“F点”,求k的值;(2)已知函数(a,b,,)存在两个不相等的“F点”,,且,求a的取值范围.21.(12分)已知是递增的等比数列,,且、、成等差数列.(Ⅰ)求数列的通项公式;(Ⅱ)设,,求数列的前项和.22.(10分)(1)已知数列满足:,且(为非零常数,),求数列的前项和;(2)已知数列满足:(ⅰ)对任意的;(ⅱ)对任意的,,且.①若,求数列是等比数列的充要条件.②求证:数列是等比数列,其中.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】
根据约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案【详解】作出不等式组所表示的可行域如下图所示:联立,得,可得点,由得,平移直线,当该直线经过可行域的顶点时,该直线在轴上的截距最小,此时取最小值,即.故选:D.本题考查简单的线性规划,考查数形结合的解题思想方法,是基础题.2.D【解析】令,可得.在坐标系内画出函数的图象(如图所示).当时,.由得.设过原点的直线与函数的图象切于点,则有,解得.所以当直线与函数的图象切时.又当直线经过点时,有,解得.结合图象可得当直线与函数的图象有3个交点时,实数的取值范围是.即函数在区间上有三个零点时,实数的取值范围是.选D.点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.3.B【解析】
结合函数的对应性,利用充分条件和必要条件的定义进行判断即可.【详解】解:若,则,即成立,若,则由,得,则“”是“”的必要不充分条件,故选:B.本题主要考查充分条件和必要条件的判断,结合函数的对应性是解决本题的关键,属于基础题.4.B【解析】由θ是第二象限角且sinθ=知:,.所以.5.B【解析】
先求出双曲线的渐近线方程,可得则直线与直线的距离,根据圆与双曲线的右支没有公共点,可得,解得即可.【详解】由题意,双曲线的一条渐近线方程为,即,∵是直线上任意一点,则直线与直线的距离,∵圆与双曲线的右支没有公共点,则,∴,即,又故的取值范围为,故选:B.本题主要考查了直线和双曲线的位置关系,以及两平行线间的距离公式,其中解答中根据圆与双曲线的右支没有公共点得出是解答的关键,着重考查了推理与运算能力,属于基础题.6.C【解析】
利用基本初等函数的单调性判断各选项中函数在区间上的单调性,进而可得出结果.【详解】对于A选项,函数在区间上为增函数;对于B选项,函数在区间上为增函数;对于C选项,函数在区间上为减函数;对于D选项,函数在区间上为增函数.故选:C.本题考查函数在区间上单调性的判断,熟悉一些常见的基本初等函数的单调性是判断的关键,属于基础题.7.C【解析】
首先绘制出可行域,再绘制出目标函数,根据可行域范围求出目标函数中的取值范围.【详解】由题知,满足,可行域如下图所示,可知目标函数在点处取得最小值,故目标函数的最小值为,故的取值范围是.故选:D.本题主要考查了线性规划中目标函数的取值范围的问题,属于基础题.8.C【解析】
利用终边相同的角的公式判断即得正确答案.【详解】与的终边相同的角可以写成2kπ+(k∈Z),但是角度制与弧度制不能混用,所以只有答案C正确.故答案为C(1)本题主要考查终边相同的角的公式,意在考查学生对该知识的掌握水平和分析推理能力.(2)与终边相同的角=+其中.9.A【解析】
根据等差数列和等比数列公式直接计算得到答案.【详解】由成等比数列得,即,已知,解得.故选:.本题考查了等差数列,等比数列的基本量的计算,意在考查学生的计算能力.10.C【解析】
解一元二次不等式求得集合,由此求得【详解】由,解得或.因为或,所以.故选:C本小题主要考查一元二次不等式的解法,考查集合补集的概念和运算,属于基础题.11.C【解析】
设直线AB的方程为,代入得:,由根与系数的关系得,,从而得到,同理可得,再利用求得的值,当Q,P,M三点共线时,即可得答案.【详解】根据题意,可知抛物线的焦点为,则直线AB的斜率存在且不为0,设直线AB的方程为,代入得:.由根与系数的关系得,,所以.又直线CD的方程为,同理,所以,所以.故.过点P作PM垂直于准线,M为垂足,则由抛物线的定义可得.所以,当Q,P,M三点共线时,等号成立.故选:C.本题考查直线与抛物线的位置关系、焦半径公式的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意取最值的条件.12.A【解析】双曲线﹣=1的渐近线方程为y=x,不妨设过点F1与双曲线的一条渐过线平行的直线方程为y=(x﹣c),与y=﹣x联立,可得交点M(,﹣),∵点M在以线段F1F1为直径的圆外,∴|OM|>|OF1|,即有+>c1,∴>3,即b1>3a1,∴c1﹣a1>3a1,即c>1a.则e=>1.∴双曲线离心率的取值范围是(1,+∞).故选:A.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a,b,c的方程或不等式,再根据a,b,c的关系消掉b得到a,c的关系式,建立关于a,b,c的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.二、填空题:本题共4小题,每小题5分,共20分。13.1【解析】
按照“角”的位置分类,分“角”在两端,在中间,以及在第二个或第四个位置上,即可求出.【详解】①若“角”在两端,则宫、羽两音阶一定在角音阶同侧,此时有种;②若“角”在中间,则不可能出现宫、羽两音阶不相邻且在角音阶的同侧;③若“角”在第二个或第四个位置上,则有种;综上,共有种.故答案为:1.本题主要考查利用排列知识解决实际问题,涉及分步计数乘法原理和分类计数加法原理的应用,意在考查学生分类讨论思想的应用和综合运用知识的能力,属于基础题.14.【解析】
根据题意求出点N的坐标,将其代入椭圆的方程,求出参数m的值,再根据离心率的定义求值.【详解】由题意得,将其代入椭圆方程得,所以.故答案为:.本题考查了椭圆的标准方程及几何性质,属于中档题.15.【解析】
考查更为一般的问题:设P为椭圆C:上的动点,为椭圆的两个焦点,为△PF1F2的内心,求点I的轨迹方程.解法一:如图,设内切圆I与F1F2的切点为H,半径为r,且F1H=y,F2H=z,PF1=x+y,PF2=x+z,,则.直线IF1与IF2的斜率之积:,而根据海伦公式,有△PF1F2的面积为因此有.再根据椭圆的斜率积定义,可得I点的轨迹是以F1F2为长轴,离心率e满足的椭圆,其标准方程为.解法二:令,则.三角形PF1F2的面积:,其中r为内切圆的半径,解得.另一方面,由内切圆的性质及焦半径公式得:从而有.消去θ得到点I的轨迹方程为:.本题中:,代入上式可得轨迹方程为:.16.-2【解析】
先根据约束条件画出可行域,再利用几何意义求最值,表示直线在轴上的截距,只需求出可行域直线在轴上的截距最大最小值时所在的顶点即可.【详解】由题意得:目标函数在点B取得最大值为7,在点A处取得最小值为1,∴,,∴直线AB的方程是:,∴则,故答案为.本题主要考查了简单的线性规划,以及利用几何意义求最值的方法,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)见解析;(2)【解析】
(1)因为,所以,所以,所以数列是等差数列,设数列的公差为,由可得,因为成等比数列,所以,所以,所以,因为,所以,解得(舍去)或,所以,所以.(2)由(1)知,,所以,所以.18.(Ⅰ)3;(Ⅱ).【解析】
(Ⅰ)函数,利用和差公式和倍角公式,化简即可求得;(Ⅱ)由(Ⅰ)知函数,根据点是函数图象的一个对称中心,代入可得,利用余弦定理、基本不等式的性质即可得出.【详解】(Ⅰ)的最大值为最小正周期为(Ⅱ)由题意及(Ⅰ)知,,故故的面积的最大值为.本题考查三角函数的和差公式、倍角公式、三角函数的图象与性质、余弦定理、基本不等式的性质,考查理解辨析能力与运算求解能力,属于中档基础题.19.(1)(2)【解析】
(1)利用零点分段法将表示为分段函数的形式,由此求得不等式的解集.(2)对分成三种情况,求得的最小值,由此求得的取值范围.【详解】(1)当时,,由此可知,的解集为(2)当时,的最小值为和中的最小值,其中,.所以恒成立.当时,,且,不恒成立,不符合题意.当时,,若,则,故不恒成立,不符合题意;若,则,故不恒成立,不符合题意.综上,.本小题主要考查绝对值不等式的解法,考查根据绝对值不等式恒成立求参数的取值范围,考查分类讨论的数学思想方法,属于中档题.20.(1)①极小值为1,无极大值.②实数k的值为1.(2)【解析】
(1)①将代入可得,求导讨论函数单调性,即得极值;②设是函数的一个“F点”(),即是的零点,那么由导数可知,且,可得,根据可得,设,由的单调性可得,即得.(2)方法一:先求的导数,存在两个不相等的“F点”,,可以由和韦达定理表示出,的关系,再由,可得的关系式,根据已知解即得.方法二:由函数存在不相等的两个“F点”和,可知,是关于x的方程组的两个相异实数根,由得,分两种情况:是函数一个“F点”,不是函数一个“F点”,进行讨论即得.【详解】解:(1)①当时,(),则有(),令得,列表如下:x10极小值故函数在处取得极小值,极小值为1,无极大值.②设是函数的一个“F点”().(),是函数的零点.,由,得,,由,得,即.设,则,所以函数在上单调增,注意到,所以方程存在唯一实根1,所以,得,根据①知,时,是函数的极小值点,所以1是函数的“F点”.综上,得实数k的值为1.(2)由(a,b,,),可得().又函数存在不相等的两个“F点”和,,是关于x的方程()的两个相异实数根.又,,,即,从而,,即..,,解得.所以,实数a的取值范围为.(2)(解法2)因为(a,b,,)所以().又因为函数存在不相等的两个“F点”和,所以,是关于x的方程组的两个相异实数根.由得,.(2.1)当是函数一个“F点”时,且.所以,即.又,所以,所以.又,所以.(2.2)当不是函数一个“F点”时,则,是关于x的方程的两个相异实数根.又,所以得所以,得.所以,得.综合(2.1)(2.2),实数a的取值范围为.本题考查利用导数求函数极值,以及由函数的极值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44742-2024海参及其制品中海参多糖的测定高效液相色谱法
- 2024轨道车辆座椅动态舒适性试验技术规范
- 培训课件 -OD组织发展全景图之组织激活
- 大理2024年04版小学4年级下册英语第二单元测验卷
- 农场成本核算-记账实操
- 北京市顺义区2023-2024学年八年级下学期期末英语试题
- 第三单元名著导读《儒林外史》教学设计-2023-2024学年统编版语文九年级下册
- 2023年乙二醇辛醇糠醇资金需求报告
- 三维数字内容制作-三维动画制作流程规范
- 1.2.2 反比例函数的性质 同步练习
- GB/T 29822-2013钨铼热电偶丝及分度表
- GA/T 74-2017安全防范系统通用图形符号
- GA/T 1968-2021法医学死亡原因分类及其鉴定指南
- GA 1551.6-2021石油石化系统治安反恐防范要求第6部分:石油天然气管道企业
- 第六章方针目标管理
- 企业设备设施清单(样本)
- 光伏电站项目招标文件范文
- 廻转窑挥发法生产氧化锌作业指导书
- 急性呼吸窘迫综合征(ARDS)-公开课课件
- 二年级上册科学课件-《8.形状改变了》苏教版 (共15张PPT)
- 创三甲资料盒(新)
评论
0/150
提交评论