长沙市七年级数学试卷整式乘法与因式分解易错压轴解答题训练经典题目(含答案)_第1页
长沙市七年级数学试卷整式乘法与因式分解易错压轴解答题训练经典题目(含答案)_第2页
长沙市七年级数学试卷整式乘法与因式分解易错压轴解答题训练经典题目(含答案)_第3页
长沙市七年级数学试卷整式乘法与因式分解易错压轴解答题训练经典题目(含答案)_第4页
长沙市七年级数学试卷整式乘法与因式分解易错压轴解答题训练经典题目(含答案)_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长沙市七年级数学试卷整式乘法与因式分解易错压轴解答题训练经典题目(含答案)一、整式乘法与因式分解易错压轴解答题1.如图1,有A型、B型正方形卡片和C型长方形卡片各若干张.(1)用1张A型卡片,1张B型卡片,2张C型卡片拼成一个正方形,如图2,用两种方法计算这个正方形面积,可以得到一个等式,请你写出这个等式________;(2)选取1张A型卡片,10张C型卡片,________张B型卡片,可以拼成一个正方形,这个正方形的边长用含a,b的代数式表示为________;(3)如图3,两个正方形边长分别为m、n,m+n=10,mn=19,求阴影部分的面积.2.阅读材料:把形如的二次三项式(或其一部分)配成完全平方式的方法叫做配方法,配方法的基本形式是完全平方公式的逆写,即.例如:是的一种形式的配方,是的另一种形式的配方请根据阅读材料解决下列问题:(1)比照上面的例子,写出的两种不同形式的配方;(2)已知,求的值;(3)已知,求的值.3.【阅读与思考】整式乘法与因式分解是方向相反的变形.如何把二次_一项式ax2+bx+c进行因式分解呢?我们已经知道,(a1x+c1)(a2x+c2)=a1a2x2+a1c2x+a2c1x+c1c2=a1a2x2+(a1c2+a2c1)x+c1c2.反过来,就得到:a1a2x2+(a1c2+a2c1)x+c1c2=(a1x+c1)(a2x+c2).我们发现,二次项的系数a分解成a1a2,常数项c分解成c1c2,并且把a1,a2,c1,c2,如图①所示摆放,按对角线交叉相乘再相加,就得到a1c2+a2c1,如果a1c2+a2c1的值正好等于ax2+bx+c的一次项系数b,那么ax2+bx+c就可以分解为(a1x+c1)(a2x+c2),其中a1,c1位于图的上一行,a2,c2位于下一行.像这种借助画十字交叉图分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做“十字相乘法”.例如,将式子x2-x-6分解因式的具体步骤为:首先把二次项的系数1分解为两个因数的积,即1=1×1,把常数项-6也分解为两个因数的积,即-6=2×(-3);然后把1,1,2,-3按图②所示的摆放,按对角线交叉相乘再相加的方法,得到1×(-3)+1×2=-1,恰好等于一次项的系数-1,于是x2-x-6就可以分解为(x+2)(x-3).(1)请同学们认真观察和思考,尝试在图③的虚线方框内填入适当的数,并用“十字相乘法”分解因式:x2+x-6=________.(2)【理解与应用】请你仔细体会上述方法,并尝试对下面两个二次三项式进行分解因式:Ⅰ.2x2+5x-7=________;Ⅱ.6x2-7xy+2y2=________

.(3)【探究与拓展】对于形如ax2+bxy+cy2+dx+ey+f的关于x,y的二元二次多项式也可以用“十字相乘法”来分解.如图④,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式=(mx+py+j)(nx+qy+k),请你认真阅读上述材料并尝试挑战下列问题:Ⅰ.分解因式3x2+5xy-2y2+x+9y-4=________

.Ⅱ.若关于x,y的二元二次式x2+7xy-18y2-5x+my-24可以分解成两个一次因式的积,求m的值.________Ⅲ.己知x,y为整数,且满足x2+3xy+2y2+2x+3y=-1,请写出一组符合题意的x,y的值.________4.阅读下列材料:对于多项式x2+x-2,如果我们把x=1代入此多项式,发现x2+x-2的值为0,这时可以确定多项式中有因式(x-1):同理,可以确定多项式中有另一个因式(x+2),于是我们可以得到:x2+x-2=(x-1)(x+2)又如:对于多项式2x2-3x-2,发现当x=2时,2x2-3x-2的值为0,则多项式2x2-3x-2有一个因式(x-2),我们可以设2x2-3x-2=(x-2)(mx+n),解得m=2,n=1,于是我们可以得到:2x2-3x-2=(x-2)(2x+1)请你根据以上材料,解答以下问题:(1)当x=________时,多项式6x2-x-5的值为0,所以多项式6x2-x-5有因式________

,从而因式分解6x2-x-5=________.(2)以上这种因式分解的方法叫试根法,常用来分解一些比较复杂的多项式.请你尝试用试根法分解多项式:①2x2+5x+3;②x3-7x+6(3)小聪用试根法成功解决了以上多项式的因式分解,于是他猜想:代数式(x-2)3-(y-2)3-(x-y)3有因式________

,________

________

,所以分解因式(x-2)3-(y-2)3-(x-y)3=________。5.上数学课时,王老师在讲完乘法公式(a±b)2=a2±2ab+b2的多种运用后,要求同学们运用所学知识解答:求代数式x2+4x+5的最小值?同学们经过交流、讨论,最后总结出如下解答方法:解:x2+4x+5=x2+4x+4+1=(x+2)2+1∵(x+2)2≥0∴当x=-2时,(x+2)2的值最小,最小值是0,∴(x+2)2+1≥1∴当(x+2)2=0时,(x+2)2+1的值最小,最小值是1,∴x2+4x+5的最小值是1.请你根据上述方法,解答下列各题(1)知识再现:当x=________时,代数式x2-6x+12的最小值是________;(2)知识运用:若y=-x2+2x-3,当x=________时,y有最________值(填“大”或“小”)(3)知识拓展:若-x2+3x+y+5=0,求y+x的最小值6.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是

(请选择正确的一个)A.a2-b2=(a+b)(a-b)B.a2-2ab+b2=(a-b)2C.a2+ab=a(a+b)(2)若x2-y2=16,x+y=8,求x-y的值;(3)计算:.7.若x满足(5-x)(x-2)=2,求(x-5)2+(2-x)2的值;解:设5-x=a,x-2=b,则(5-x)(x-2)=ab=2,a+b=(5-x)+(x-2)=3,所以(x-5)2+(2-x)2=(5-x)2+(x-2)2=a2+b2=(a+b)2-2ab=32-2×2=5,请仿照上面的方法求解下面的问题(1)若x满足(9-x)(x-4)=4,求(9-x)2+(x-4)2的值;(2)已知正方形ABCD的边长为x,E,F分别是AD,DC上的点,且AE=2,CF=4,长方形EMFD的面积是63,分别以MF、DF为边作正方形,求阴影部分的面积.8.借助图形直观,感受数与形之间的关系,我们常常可以发现一些重要结论.初步应用(1)①如图1,大长方形的面积可以看成4个小长方形的面积之和,由此得到多项式乘多项式的运算法,则________(用图中字母表示)②如图2,借助①,写出一个我们学过的公式:________(用图中字母表示)(2)深入探究仿照图2,构造图形并计算(a+b+c)2(3)拓展延伸借助以上探究经验,解决下列问题:①代数式(a1+a2+a2+a3+a4+a5)2展开、合并同类项后,得到的多项式的项数一共有________项;②若正数x、y、z和正数m、n、p,满足x+m=y+n=z+p=t,请通过构造图形比较px+my+nz与t2的大小(画出图形,并说明理由);③已知x、y、z满足x+y+z=2m,x2+y2+z2=2n,xyz=p,求x2y2+y2z2+x2z2的值(用含m、n、P的式子表示)9.阅读材料:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,那么形如a+bi(a,b为实数)的数就叫做复数,a叫这个复数的实部,b叫做这个复数的虚部.它有如下特点:①它的加,减,乘法运算与整式的加,减,乘法运算类似例如计算:(2+i)+(3﹣4i)=(2+3)+(1﹣4)i=5﹣3i;(3+i)i=3i+i2=3i﹣1②若他们的实部和虚部分别相等,则称这两个复数相等若它们的实部相等,虚部互为相反数,则称这两个复数共轭,如1+2i的共轭复数为1﹣2i.(1)填空:(3i﹣2)(3+i)=________;(1+2i)3(1﹣2i)3=________;(2)若a+bi是(1+2i)2的共轭复数,求(b﹣a)a的值;(3)已知(a+i)(b+i)=1﹣3i,求(a2+b2)(i2+i3+i4+…+i2019)的值.10.问题发现:小星发现把几个图形拼成一个新的图形,再通过两种不同的方法计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.例如,由图1,可得到等式:(a+2b)(a+b)=a2+3ab+2b2.(1)类比探究:如图2,将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c的正方形,通过上面的启发,你能发现什么结论?请用等式表示出来.(2)结论应用:已知a+b+c=14,ab+bc+ac=26,求a2+b2+c2的值.(3)拓展延伸:如图,将两个边长分别为a和b的正方形拼在一起,B,C,G三点在同一直线上,连接BD和BF.若这两个正方形的边长满足a+b=8,ab=14,请求出阴影部分的面积.11.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一大重要研究成果.如图所示的三角形数表,称“杨辉三角”.具体法则:两侧的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律:(1)根据上面的规律,写出(a+b)5的展开式;(2)利用上面的规律计算:(﹣3)4+4×(﹣3)3×2+6×(﹣3)2×22+4×(﹣3)×23+24.12.认真阅读材料,然后回答问题:我们初中学习了多项式的运算法则,相应的,我们可以计算出多项式的展开式,如:(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=(a+b)2(a+b)=a3+3a2b+3ab2+b3,…下面我们依次对(a+b)n展开式的各项系数进一步研究发现,当n取正整数时可以单独列成表中的形式:上面的多项式展开系数表称为“杨辉三角形”;仔细观察“杨辉三角形”,用你发现的规律回答下列问题:(1)多项式(a+b)n的展开式是一个几次几项式?并预测第三项的系数;(2)请你预测一下多项式(a+b)n展开式的各项系数之和.(3)结合上述材料,推断出多项式(a+b)n(n取正整数)的展开式的各项系数之和为S,(结果用含字母n的代数式表示).【参考答案】***试卷处理标记,请不要删除一、整式乘法与因式分解易错压轴解答题1.(1)(a+b)2=a2+b2+2ab(2)25;a+5b(3)解:阴影部分的面积为则阴影部分的面积为=432答:阴影部分的面积为432.【解析】【解答解析:(1)(2)25;(3)解:阴影部分的面积为则阴影部分的面积为答:阴影部分的面积为.【解析】【解答】(1)方法一:这个正方形的边长为,则其面积为方法二:这个正方形的面积等于两个小正方形的面积与两个长方形的面积之和则其面积为因此,可以得到一个等式故答案为:;(2)设选取x张B型卡片,x为正整数由(1)的方法二得:拼成的正方形的面积为由题意得:是一个完全平方公式则因此,拼成的正方形的面积为所以其边长为故答案为:25,;【分析】(1)方法一:先求出这个正方形的边长,再利用正方形的面积公式即可得;方法二:这个正方形的面积等于两个小正方形的面积与两个长方形的面积之和即可得;然后根据方法一与方法二的面积相等可得出所求的等式;(2)设选取x张B型卡片,根据(1)中的方法二求出拼成的正方形的面积,然后利用完全平方公式即可求出x的值,最后根据正方形的面积公式即可得其边长;(3)先利用阴影部分的面积等于大正方形的面积减去两个直角三角形的面积求出阴影部分的面积,再利用完全平方公式进行变形,然后将已知等式的值代入求解即可.2.(1)解:;;(2)解:∵,∴(x-2)2+(y+3)2=0,∴,解得,∴;(3)解:==∵,∴,解析:(1)解:;;(2)解:∵,∴,∴,解得,∴;(3)解:==∵,∴,∴,解得,∴.【解析】【分析】(1)直接利用完全平方公式并参照题干即可得出答案;(2)先对已知进行变形,然后利用平方的非负性求出x,y的值,再代入求值即可;(3)首先将原式利用完全平方公式分解因式,然后利用平方的非负性求出a,b,c的值,进而可得出答案.3.(1)(x+3)(x-2)(2)(x-1)(2x+7);(2x-y)(3x-2y)(3)(x+2y-1)(3x-y+4);解:如图,∵关于x,y的二元二次式x2+7xy-18y2-解析:(1)(x+3)(x-2)(2)(x-1)(2x+7);(2x-y)(3x-2y)(3)(x+2y-1)(3x-y+4);解:如图,∵关于x,y的二元二次式x2+7xy-18y2-5x+my-24可以分解成两个一次因式的积,∴存在其中1×1=1,9×(-2)=-18,(-8)×3=--24;而7=1×(-2)+1×9,-5=1×(-8)+1×3,∴m=9×3+(-2)×(-8)=43或m=9×(-8)+(-2)×3=-78.故m的值为43或者-78.;x=-1,y=0(答案不唯一)【解析】【解答】(1)

将式子x2-x-6分解因式的具体步骤为:首先把二次项的系数1分解为两个因数的积,即1=1×1,把常数项-6也分解为两个因数的积,即-6=3×(-2);然后把1,1,3,-2按下图所示的摆放,按对角线交叉相乘再相加的方法,得到1×(+3)+1×(-2)=-1,恰好等于一次项的系数1,于是x2+x-6就可以分解为(x+3)(x-2).(2)根据基本原理,同样得出十字交叉图:Ⅰ.

II.∴2x2+5x-7=

(x-1)(2x+7),

6x2-7xy+2y2=(2x-y)(3x-2y);(3)Ⅰ.根据ax2+bxy+cy2+dx+ey+f分解因式的基本原理得如图所示的双十字交叉图:所以3x2+5xy-2y2+x+9y-4=(x+2y-1)(3x-y+4)

;Ⅱ如图:x2+7xy-18y2-5x+my-24可以分解成(x-2y+3)(x+9y-8),或分解成:(x-2y-8)(x+9y+3),所以m=43或-78.III.x2+3xy+2y2+2x+3y=-1,得

x2+3xy+2y2+2x+3y+1=0,如图所示:得(x+2y+1)(x+y+1)=0,∴

x+2y+1=0,或x+y+1=0,或

x+2y+1=0且x+y+1=0∴如当x=-1时,y=0,或x=3,y=-4等均可使上式成立。【分析】(1)根据题给基本原理分步解答,即左侧相乘等于二次项,右侧相乘等于常数项,交叉相乘再相加等于中间项,最终得出如图所示的十字交叉结果。(2)根据十字相乘法的原理画出十字相乘图,就能得出分解因式的结果。(3)I.对于双十字相乘法,同样也模仿十字相乘法根据其基本原理,分步解答,画出双十字交叉图,根据原理验证各项系数,得出因式分解的结论。II.y项系数不定,先根据双十字相乘法画出双十字相乘图,在满足其他项系数前提下,再算m项系数。III.先根据双十字相乘原理分解因式,要使二元二次式等于零,只要一个因式等于即可,所以符合条件的答案不唯一。4.(1)1;x-1;(x-1)(6x+5)(2)解:①2x2+5x+3=(x+1)(2x+3)②x3-7x+6=(x-1)(x-2)x+3)(3)x-2;y-2;x-y;(x-2)2-(解析:(1)1;x-1;(x-1)(6x+5)(2)解:①2x2+5x+3=(x+1)(2x+3)②x3-7x+6=(x-1)(x-2)x+3)(3)x-2;y-2;x-y;(x-2)2-(y-2)3-(x-y)3=3(x-2)(y-2)(x-y)【解析】【分析】(1)根据阅读材料可知当x=1时多项式6x2-x-5的值为0,从而可得到多项式6x2-x-5的一个因式为(x-1)即可将此多项式分解因式。(2)将x=-1代入2x2+5x+3,可知其值为0,因此可将此多项式分解因式;将x=1代入x3-7x+6,可知x3-7x+6=0,再将x=2代入,可知x3-7x+6=0,从而可将其多项式进行分解因式。(2)利用试根法,将已知多项式进行分解因式即可。5.(1)3;3(2)1;-2(3)解:∵-x2+3x+y+5=0,∴x+y=x2-2x-5=(x-1)2-6,∵(x-1)2≥0∴(x-1)2-6≥-6∴当x=1时,y+x的最小值为解析:(1)3;3(2)1;-2(3)解:∵-x2+3x+y+5=0,∴x+y=x2-2x-5=(x-1)2-6,∵(x-1)2≥0∴(x-1)2-6≥-6∴当x=1时,y+x的最小值为-6.【解析】【解答】解:(1)∵x2-6x+12=(x-3)2+3,∴当x=3时,有最小值3:(2)∵y=-x2+2x-3=-(x-1)2-2,∴当x=1时有最大值-2【分析】(1)把代数式x2-6x+12根据完全平方公式配方,由配方的结果:(x-3)2+3,得(x-3)2≥0,当(x-3)2=0,即x=3时,求得x2-6x+12最小值为3;(2)把y=-x2+2x-3配方,由配方的结果:-(x-1)2-2,得-(x-1)2≤0,则当-(x-1)2=0,即x=1时,y有最大值为-2;(3)首先移项,求出y+x的表达式,再把此表达式配方,根据配方的结果,因为(x-1)2≥0,得出x=1,

y+x有最小值-6即可.6.(1)A(2)解:∵x2-y2=(x+y)(x-y)=16,x+y=8,∴x-y=2(3)解:==

==10102019【解析】【解答】解:(1)根解析:(1)A(2)解:∵x2-y2=(x+y)(x-y)=16,x+y=8,∴x-y=2(3)解:==

==【解析】【解答】解:(1)根据图形得:图1中阴影部分面积=a2-b2,图2中长方形面积=(a+b)(a-b),∴上述操作能验证的等式是a2-b2=(a+b)(a-b),故答案为:A【分析】(1)观察图1与图2,根据图1中阴影部分面积=a2-b2,图2中长方形面积=(a+b)(a-b),验证平方差公式即可;(2)已知第一个等式左边利用平方差公式化简,将第二个等式代入求出所求式子的值即可;(3)先利用平方差公式变形,再约分即可得到结果.7.(1)解:设9-x=a,x-4=b,则(9-x)(x-4)=ab=4,a+b=(9-x)+(x-4)=5,∴(9-x)2+(x-4)2=a2+b2=(a+b)2-2ab=52-2×4=1解析:(1)解:设9-x=a,x-4=b,则(9-x)(x-4)=ab=4,a+b=(9-x)+(x-4)=5,∴(9-x)2+(x-4)2=a2+b2=(a+b)2-2ab=52-2×4=17;(2)解:∵正方形ABCD的边长为x,∴DE=x-2,DF=x-4,设x-2=a,x-4=b,则S正方形EMFD=ab=63,a-b=(x-2)-(x-4)=2,那么(a+b)2=(a-b)2+4ab=256,得a+b=16,∴(x-2)2-(x-4)2=a2-b2=(a+b)(a-b)=32.即阴影部分的面积是32.【解析】【【分析】(1)设(9-x)=a,(x-4)=b,根据已知等式确定出所求即可;(2)设正方形ABCD边长为x,进而表示出MF与DF,求出阴影部分面积即可.8.(1)(a+b)(c+d)=ac+ad+bc+bd;(a+b)2=a2+2ab+b2(2)解:已知大正方形的边长为a+b+c,利用图形3的面积关系可得:(a+b+c)2=a2+b2+c解析:(1)(a+b)(c+d)=ac+ad+bc+bd;(a+b)2=a2+2ab+b2(2)解:已知大正方形的边长为a+b+c,利用图形3的面积关系可得:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac.(3)①15②如图4,由图形得:px+my+nz<t2;③∵x+y+z=2m,∴x2+y2+z2+2xz+2xy+2yz=4m2,∵x2+y2+z2=2n,∴2xz+2xy+2yz=4m2-2n,∵xz+xy+yz=2m2-n,∴(xz+xy+yz)2=x2y2+y2z2+x2z2+2x2yz+2y2xz+2z2xy=(2m2-n)2,∴x2y2+y2z2+x2z2=4m4-4m2n+n2-2xyz(x+y+z)=4m4-4m2n+n2-2p•2m=4m4-4m2n+n2-4pm.【解析】【解答】解:(1)①如图1,得(a+b)(c+d)=ac+ad+bc+bd,②如图2,由②得:(a+b)2=a2+2ab+b2,故答案为①(a+b)(c+d)=ac+ad+bc+bd,②(a+b)2=a2+2ab+b2;(3)①(a1+a2)2=a12+a22…2项+2a1a2….1项所以一共有2+1=3项;(a1+a2+a3)2=a12+a22+a32…3项+2a1a2+2a1a3…2项+2a2a3…1项所以一共有3+2+1=6项;(a1+a2+a3+a4)2=a12+a22+a32+a42…4项+2a1a2+2a1a3+2a1a4…3项+2a2a3+2a2a4…2项+2a3a4…1项所以一共有4+3+2+1=10项;(a1+a2+a3+a4+a5)2=a12+a22+a32+a42+a52…5项+2a1a2+2a1a3+2a1a4+2a1a5…4项+2a2a3+2a2a4+2a2a5…3项+2a3a4+2a3a5…2项+2a4a5…1项所以一共有5+4+3+2+1=15项;故答案为15;【分析】(1)①根据长方形的面积可得结论;②图中大正方形的面积可以用正方形的面积公式来求,也可把正方形分成四个小图形分别求出面积再相加,从而得出(a+b)2=a2+2ab+b2;(2)直接作图即可得出(a+b+c)2=a2+b2+c2+2ab+2bc+2ac成立;(3)①分别计算两个数的平方,三个数的平方,…,得出规律即可求出答案;②画图4可得结论;③先将x+y+z=2m两边同时平方得:xz+xy+yz=2m2-n,继续平方后化简可得结论.9.(1)7i﹣9;125(2)解:∵(1+2i)2=1+4i+4i2=1+4i﹣4=﹣3+4i,又a+bi是(1+2i)2的共轭复数,∴a=﹣3,b=﹣4,∴(b﹣a)a=(﹣4解析:(1)7i﹣9;125(2)解:∵(1+2i)2=1+4i+4i2=1+4i﹣4=﹣3+4i,又a+bi是(1+2i)2的共轭复数,∴a=﹣3,b=﹣4,∴(b﹣a)a=(﹣4+3)﹣3=﹣1,∴(b﹣a)a的值为﹣1(3)解:∵(a+i)(b+i)=1﹣3i,∴ab+(a+b)i﹣1=1﹣3i,∴ab﹣1=1,a+b=﹣3,∴ab=2,a+b=﹣3,∴a2+b2=(a+b)2﹣2ab=9﹣2×2=5,∵i2+i3+i4+i5=﹣1﹣i+1+i=0,i2+i3+i4+…+i2019有2018个加数,2018÷4=504…2,∴i2+i3+i4+…+i2019=0+i2018+i2019=i2016•i2+i2016•i3=﹣1﹣i,∴(a2+b2)(i2+i3+i4+…+i2019)=5(﹣1﹣i)=﹣5﹣5i.【解析】【解答】(1)解:(3i﹣2)(3+i)=9i﹣3﹣6﹣2i=7i﹣9;(1+2i)3(1﹣2i)3=[(1+2i)(1﹣2i)]3=(1﹣4i2)3=(1+4)3=125;故答案为:7i﹣9;125【分析】(1)按照定义计算即可;(2)先按照完全平方式及定义展开运算,求出a和b的值,再代入要求得式子求解即可;(3)按照定义计算ab及a+b的值,再利用配方法得出(a2+b2)的值;由于i2+i3+i4+i5=-1-i+1+i=0,4个一组,剩下两项,单独计算这两项的和,其余每相邻四项的和均为0,从而可得答案.10.(1)解:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac(2)解:∵a+b+c=14,ab+bc+ac=26,∴a2+b2+c2=(a+b+c)2−2(ab+ac+bc解析:(1)解:=a2+b2+c2+2ab+2bc+2ac(2)解:∵a+b+c=14,ab+bc+ac=26,∴a2+b2+c2=(a+b+c)2−2(ab+ac+bc)=196−52=144(3)解:∵a+b=8,ab=14,∴=+(a+b)×b-=+-ab=-ab=´-´14=11【解析】【分析】(1)此题根据面积的不同求解方法,可得到不同的表示方法.一种可以是3个正方形的面积和6个矩形的面积,一种是大正方形的面积,可得等式(a+b+c)2=a2+b2+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论