版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
试卷第=page66页,共=sectionpages77页试卷第=page77页,共=sectionpages77页2024年江苏省南通市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如果零上记作,那么零下记作(
)A. B. C. D.2.2024年5月,财政部下达1582亿元资金,支持地方进一步巩固和完善城乡统一、重在农村的义务教育经费保障机制.将“1582亿”用科学记数法表示为(
)A. B. C. D.3.计算的结果是(
)A.9 B.3 C. D.4.如图是一个几何体的三视图,该几何体是(
)A.球 B.棱柱 C.圆柱 D.圆锥5.如图,直线,矩形的顶点A在直线b上,若,则的度数为(
)A. B. C. D.6.红星村种的水稻2021年平均每公顷产,2023年平均每公顷产.求水稻每公顷产量的年平均增长率.设水稻每公顷产量的年平均增长率为x.列方程为(
)A. B.C. D.7.将抛物线向右平移3个单位后得到新抛物线的顶点坐标为(
)A. B. C. D.8.“赵爽弦图”巧妙利用面积关系证明了勾股定理.如图所示的“赵爽弦图”是由四个全等直角三角形和中间的小正方形拼成的一个大正方形.设直角三角形的两条直角边长分别为m,.若小正方形面积为5,,则大正方形面积为(
)A.12 B.13 C.14 D.159.甲、乙两人沿相同路线由A地到B地匀速前进,两地之间的路程为.两人前进路程s(单位:)与甲的前进时间t(单位:h)之间的对应关系如图所示.根据图象信息,下列说法正确的是(
)
A.甲比乙晚出发1h B.乙全程共用2hC.乙比甲早到B地3h D.甲的速度是10.在中,,,垂足为H,D是线段上的动点(不与点H,C重合),将线段绕点D顺时针旋转得到线段.两位同学经过深入研究,小明发现:当点E落在边上时,点D为的中点;小丽发现:连接,当的长最小时,.请对两位同学的发现作出评判(
)A.小明正确,小丽错误 B.小明错误,小丽正确C.小明、小丽都正确 D.小明、小丽都错误二、填空题11.分解因式:.12.已知圆锥的底面半径为,母线长为,则该圆锥的侧面积为.13.已知关于x的一元二次方程有两个不相等的实数根.请写出一个满足题意的k的值:.14.社团活动课上,九年级学习小组测量学校旗杆的高度.如图,他们在B处测得旗杆顶部A的仰角为,,则旗杆的高度为m.15.若菱形的周长为,且有一个内角为,则该菱形的高为.16.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示,如果以此器电池为电源的用电器的限制电流I不能超过10A,那么用电器可变电阻R应控制的范围是.17.如图,在中,,.正方形的边长为,它的顶点D,E,G分别在的边上,则的长为.18.平面直角坐标系中,已知,.直线(k,b为常数,且)经过点,并把分成两部分,其中靠近原点部分的面积为,则k的值为.三、解答题19.(1)计算:;(2)解方程.20.我国淡水资源相对缺乏,节约用水应成为人们的共识.为了解某小区家庭用水情况,随机调查了该小区50个家庭去年的月均用水量(单位:吨),绘制出如下未完成的统计图表.50个家庭去年月均用水量频数分布表组别家庭月均用水量(单位:吨)频数A7BmCnD6E2合计50根据上述信息,解答下列问题:(1)______,______;(2)这50个家庭去年月均用水量的中位数落在______组;(3)若该小区有1200个家庭,估计去年月均用水量小于4.8吨的家庭数有多少个?21.如图,点D在的边AB上,经过边的中点E,且.求证.22.南通地铁1号线“世纪大道站”有标识为1、2、3、4的四个出入口.某周六上午,甲、乙两位学生志愿者随机选择该站一个出入口,开展志愿服务活动.(1)甲在2号出入口开展志愿服务活动的概率为______;(2)求甲、乙两人在同一出入口开展志愿服务活动的概率.23.如图,中,,,,与相切于点D.
(1)求图中阴影部分的面积;(2)设上有一动点P,连接,.当的长最大时,求的长.24.某快递企业为提高工作效率,拟购买A、B两种型号智能机器人进行快递分拣.相关信息如下:信息一A型机器人台数B型机器人台数总费用(单位:万元)1326032360信息二(1)求A、B两种型号智能机器人的单价;(2)现该企业准备用不超过700万元购买A、B两种型号智能机器人共10台.则该企业选择哪种购买方案,能使每天分拣快递的件数最多?25.已知函数(a,b为常数).设自变量x取时,y取得最小值.(1)若,,求的值;(2)在平面直角坐标系中,点在双曲线上,且.求点P到y轴的距离;(3)当,且时,分析并确定整数a的个数.26.综合与实践:九年级某学习小组围绕“三角形的角平分线”开展主题学习活动.【特例探究】(1)如图①,②,③是三个等腰三角形(相关条件见图中标注),列表分析两腰之和与两腰之积.等腰三角形两腰之和与两腰之积分析表图序角平分线的长的度数腰长两腰之和两腰之积图①1244图②122图③1__________________请补全表格中数据,并完成以下猜想.已知的角平分线,,,用含的等式写出两腰之和与两腰之积之间的数量关系:______.【变式思考】(2)已知的角平分线,,用等式写出两边之和与两边之积之间的数量关系,并证明.【拓展运用】(3)如图④,中,,点D在边上,.以点C为圆心,长为半径作弧与线段相交于点E,过点E作任意直线与边,分别交于M,N两点.请补全图形,并分析的值是否变化?答案第=page1818页,共=sectionpages1818页答案第=page1717页,共=sectionpages1818页参考答案:1.A【分析】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】解∶∵零上记作,∴零下记作,故选∶A.2.C【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中为整数,表示时关键要正确确定的值以及的值.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值大于10时,是正数;当原数的绝对值小于1时,是负数.【详解】解:1582亿.故选:C.3.B【分析】本题考查的是二次根式的乘法运算,直接利用二次根式的乘法运算法则计算即可.【详解】解:,故选B.4.D【分析】本题主要考查了由三视图判断几何体,结合三视图与原几何体的关系即可解决问题【详解】解:由所给三视图可知,该几何体为圆锥,故选:D5.C【分析】本题考查矩形的性质,平行线的判定和性质,过点作,得到,推出,进行求解即可.【详解】解:∵矩形,∴,过点作,∵,∴,∴,∴,∵,∴;故选C.6.A【分析】本题主要考查了一元二次方程的应用,设水稻每公顷产量的年平均增长率为x,则2022年平均每公顷,则2023年平均每公顷产,根据题意列出一元二次方程即可.【详解】解:设水稻每公顷产量的年平均增长率为x,则2022年平均每公顷产,则2023年平均每公顷产,根据题意有:,故选:A.7.D【分析】本题考查了二次函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.根据平移规律,上加下减,左加右减,可得顶点式解析式.【详解】解∶抛物线向右平移3个单位后得到新抛物为,∴新抛物线的顶点坐标为,故选∶D.8.B【分析】本题考查勾股定理的证明,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型.由题意可知,中间小正方形的边长为,根据勾股定理以及题目给出的已知数据即可求出大正方形的面积为.【详解】解:由题意可知,中间小正方形的边长为,∴,即①,∵,∴②,①②得,∴大正方形的面积,故选:B.9.D【分析】本题考查用函数图象表示变量之间的关系,从函数图形获取信息,逐一进行判断即可.【详解】解:A、乙比甲晚出发1h,原说法错误,不符合题意;B、乙全程共用,原说法错误,不符合题意;C、乙比甲早到B地,原说法错误,不符合题意;D、甲的速度是,原说法正确,符合题意;故选D.10.C【分析】旋转得到,当点E落在边上时,利用三角形的外角推出,进而得到,推出,判断小明的说法,连接,等边对等角,求出,进而求出,推出点在射线上运动,根据垂线段最短,得到时,的长最小,进而推出,判断小丽的说法即可.【详解】解:∵将线段绕点D顺时针旋转得到线段,∴,当点E落在边上时,如图:∵,,∴,∴,∴,∴为的中点,故小明的说法是正确的;连接,∵,∴,∵,∴,∴,∴点在射线上运动,∴当时,的长最小,∴当的长最小时,,又∵,∴,∴,∴;故小丽的说法正确;故选C.【点睛】本题考查旋转的性质,三角形的外角,等腰三角形的判定和性质,垂线段最短,相似三角形的判定和性质,熟练掌握旋转的性质,根据题意,正确的作图,确定点的轨迹,是解题的关键.11.【详解】此题考查因式分解知识点,考查提取公因式法、公式法的因式分解的方法;首先看是否有公因式,如果有先提取公因式,然后利用公式法进行分解,要分解到不能再分解为止;解:原式=;12.【分析】本题考查求圆锥的侧面积,根据圆锥的侧面积公式进行计算即可.【详解】解:圆锥的侧面积为;故答案为:.13.0(答案不唯一)【分析】本题考查了根的判别式:一元二次方程的根与有如下关系:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程无实数根.先根据判别式的意义得到,解不等式得到的范围,然后在此范围内取一个值即可.【详解】解∶∵一元二次方程有两个不相等的实数根,∴,解得,∴当k取0时,方程有两个不相等的实数根.故答案为:0(答案不唯一).14.【分析】本题考查解直角三角形的应用,直接利用锐角三角函数,求出的值即可.【详解】解:由题意:,∴;故答案为:.15.【分析】本题考查的是菱形的性质,锐角的正弦的含义,先画图,求解,过作于,结合可得答案.【详解】解:如图,菱形的周长为,∴,过作于,而,∴,故答案为:16.【分析】本题考查反比例函数的实际应用,根据图象求出反比例函数的解析式,进而求出时,电阻R的值,根据增减性,求出电阻R应控制的范围即可.【详解】解:由图象,设,把代入,得:,∴,当时,,∵随着的增大而减小,∴如果以此器电池为电源的用电器的限制电流I不能超过10A时,;故答案为:.17.【分析】过点作,易得为等腰直角三角形,设,得到,证明,得到,进而得到,,在中,利用勾股定理求出的值,根据平行线分线段成比例,求出的长即可.【详解】解:过点作,则:,∴,∵,,∴,∴,∴,设,则:,∵正方形,∴,∴,∴,∵,∴,∴,∴,在中,由勾股定理,得:,∴,解得:,∴,∵,∴,∴,∴;故答案为:.【点睛】本题考查等腰三角形的判定和性质,全等三角形的判定和性质,勾股定理,正方形的性质,平行线分线段成比例,解题的关键是添加辅助线构造特殊图形和全等三角形.18./0.6【分析】本题主要考查了一次函数的综合问题,根据题意画出图形,求待定系数法求出的解析式,再根据直线经过点,求出,联立两直线求出点D的坐标,再根据靠近原点部分的面积为为等量关系列出关于k的等式,求解即可得出答案.【详解】解:根据题意画出图形如下,设直线的解析式为:,把,B0,3代入,可得出:,解得:,∴直线的解析式为:,∵直线经过点,∴,∴,∴直线,联立两直线方程:,解得:,∴∵,B0,3,∴,,根据题意有:,即,,解得:,故答案为:.19.(1)(2)【分析】本题考查了单项式乘多项式,解分式方程,掌握运算法则是解题的关键.(1)根据单项式乘以多项式的运算法则进行计算即可得到答案;(2)根据解分式方程的步骤进行计算即可.【详解】解:(1);(2),,∴检验,当时,,所以,原分式方程的解为20.(1)20,15(2)B(3)648个【分析】本题主要考查了扇形统计图,中位数的定义,以及用样本估计总体等知识.(1)根据C组的扇形统计图的度数即可求出n的值,再用50减去其他组别的频数,即可求出m的值.(2)根据中位数的定义即可得出答案.(3)用样本估计总体即可.【详解】(1)解:根据题意可知:,解得:,∴,故答案为:20,15;(2)解:∵一共有50组用水量数据,∴50组数据从小到大排列,中位数为第25位和26位的平均数,即中位数在B组.∴这50个家庭去年月均用水量的中位数落在B组,故答案为:B;(3)解:(个),故去年月均用水量小于4.8吨的家庭数有648个.21.见详解【分析】本题主要考查全等三角形的判定和性质以及平行线的判定,根据题意得,即可证明,有成立,根据平行线的判定即可证明结论.【详解】证明:∵点E为边的中点,∴,∵,,∴,∴,∴.22.(1)(2)【分析】题考查了利用列表法或树状图法求概率:先列表或画树状图展示所有等可能的结果数m,再找出某事件所占有的可能数n,然后根据概率的概念即可得到这个事件的概率.(1)直接利用概率公式计算可得;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再利用概率公式可得答案.【详解】(1)解:∵有标识为1、2、3、4的四个出入口,∴甲在2号出入口开展志愿服务活动的概率为,故答案为:;(2)解:画树状图如下:共有16种等可能结果,其中甲、乙两人在同一出入口开展志愿服务活动有4种结果,∴甲、乙两人在同一出入口开展志愿服务活动的概率为.23.(1)(2)【分析】本题考查了切线的性质,勾股定理的逆定理,扇形的面积公式等知识,解题的关键是:(1)连接,利用勾股定理的逆定理判定得出,利用切线的性质得出,利用等面积法求出,然后利用求解即可;(2)延长CA交于P,连接,则最大,然后在中,利用勾股定理求解即可.【详解】(1)解∶连接,
∵,,,∴,∴,∵与相切于D,∴,∵,∴,∴;(2)解∶延长CA交于P,连接,此时最大,
由(1)知:,,∴.24.(1)A型智能机器人的单价为80万元,B型智能机器人的单价为60万元(2)选择购买A型智能机器人5台,购买B型智能机器人5台【分析】本题考查了一元一次不等式的应用,二元一次方程组的应用,掌握二元一次方程组,一元一次不等式的应用是解题的关键.(1)设A型智能机器人的单价为x万元,B型智能机器人的单价为y万元,根据题意列出方程组,计算结果即可;(2)设购买A型智能机器人a台,则购买B型智能机器人台,先求出a的取值范围,再得出每天分拣快递的件数当a取得最大值时,每天分拣快递的件数最多.【详解】(1)解:设A型智能机器人的单价为x万元,B型智能机器人的单价为y万元,解得,答:A型智能机器人的单价为80万元,B型智能机器人的单价为60万元;(2)解:设购买A型智能机器人a台,则购买B型智能机器人台,∴,∴,∵每天分拣快递的件数,∴当时,每天分拣快递的件数最多为万件,∴选择购买A型智能机器人5台,购买B型智能机器人5台.25.(1)(2)2或1(3)整数a有4个【分析】本题主要考查二次函数的性质和点到坐标轴的距离,以及解不等式方程.根据题意代入化简得,结合二次函数得性质得取最小值时x的取值即可;结合题意得到
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年办公家具租赁期间的责任划分协议
- 2025年度临时工岗位变动免责责任协议4篇
- 2025年专业人才招聘协议
- 2025年度磷矿石矿山安全培训与咨询服务合同4篇
- 2025年商标品牌设计授权许可合同
- 2025年物业广告位租赁与社区商业推广合作协议3篇
- 二零二五版合同部信息化管理平台建设与应用合同3篇
- 2025版楼体亮化与广告结合安装服务合同4篇
- 二零二五年度高端花卉养护与租赁合作协议3篇
- 二零二五年度智能交通系统远期投资合同4篇
- 佛山市斯高家具全屋定制水平考试
- 摇臂钻床日常点检表
- 经济开发区扩区可行性研究报告
- 会计职业道德课件(完整版)
- 金属探测器检查记录表
- 2022年五年级数学兴趣小组活动记录
- Q∕GDW 12127-2021 低压开关柜技术规范
- 商品房预售合同登记备案表
- 版式设计发展历程-ppt课件
- 通信机房蓄电池放电试验报告
- 病原细菌的分离培养
评论
0/150
提交评论