版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课题:2.1.2空间中直线与直线之间的位置关系桓台一中数学组尹朔教材版本:新课标:人教版A版《数学必修2》设计思想:空间中直线与直线的位置关系是学生在已经学习了平面的基本概念的基础上进行学习的。在立体几何初步的内容中,位置关系主要包括直线与直线的位置关系、直线与平面的位置关系、平面与平面的位置关系。而空间中直线与直线的位置关系是以上各种位置关系中最重要、最基本的一种,是我们研究的重点。其中,等角定理解决了角在空间中的平移问题,在平移变换下角的大小不变,它是两条异面直线所成角的依据,也是以后学习研究二面角几角有关内容的理论依据,它提供了一个研究角之间关系的重要方法。教材在编写时注意从平面到空间的变化,通过观察实物,直观感知,抽象概括出定义及定理培养学生的观察能力和分析问题的能力,通过联系和比较,理解定义、定理,以利于正确的进行运用。教材分析:直线与直线问题是高考考查的重点之一,求解的关键是根据线与面之间的互化关系,借助创设辅助线与面,找出符号语言与图形语言之间的关系把问题解决。通过对有关概念和定理的概括、证明和应用,使学生体会“转化”的观点,提高学生的空间想象力和逻辑推理能力。教学目标:1、知识与技能(1).掌握异面直线的定义,会用异面直线的定义判断两直线的位置关系。(2).会用平面衬托来画异面直线。(3).掌握并会应用平行公理和等角定理。(4).会用异面直线所成的角的定义找出或作出异面直线所成的角,会在直角三角形中求简单异面直线所成的角。2、过程与方法(1)自主合作探究、师生的共同讨论与讲授法相结合;(2)让学生在学习过程不断探究归纳整理所学知识。3、情感态度与价值观(1).让学生感受到掌握空间两直线关系的必要性,提高学生的学习兴趣。(2).增强动态意识,培养学生观察、对比、分析的思维,通过平移转化渗透数学中的化归及辩证唯物主义思想。(3).通过探究增强学生的合作意识、动脑意识和动手能力。教学重点:异面直线的定义;异面直线所成的角的定义。教学难点:异面直线所成角的推证与求解。教具准备:学生学案一份、多媒体、合作探究配套教学模型(正方体)教学模式问题——自主、合作——探究教学过程:一、复习引入1.师:平面内两条直线的位置关系有?生:相交直线、平行直线相交直线(有一个公共点);平行直线(无公共点)2.师:平面内不平行的两直线必相交,问:空间内还成立否?通过实例展示。十字路口----立交桥立交桥中,两条路线AB,CD既不平行,又不相交(非平面问题)六角螺母ABCDABCD二、新课讲解1.异面直线的定义:不同在任何一个平面内的两条直线叫做异面直线。练习:在教室里找出几对异面直线的例子(学生就教室中的灯管、黑板、墙棱、暖气管、课桌等等找出许多异面直线)2.异面直线的画法说明:画异面直线时,为了体现它们不共面的特点。常借助一个或两个平面来衬托.合作探究:分别在两个平面内的两条直线是否一定异面?答:不一定:它们可能异面,可能相交,也可能平行。(学生自告奋勇的在黑板上画出上述三种情况,即巩固异面直线的定义,又训练了异面直线的画法)3.空间两直线的位置关系按平面基本性质分(1)同在一个平面内:相交直线、平行直线(2)不同在任何一个平面内:异面直线HCBEDHCBEDGA(2)无公共点:平行直线、异面直线注1:两直线异面的判别一:两条直线既不相交、又不平行.两直线异面的判别二:两条直线不同在任何一个平面内.合作探究:如图是一个正方体的展开图,如果将它还原为正方体,那么AB,CD,EF,GH这四条线段所在直线是异面直线的有对?(学生以小组为单位,对照课前准备好的正方体模型,进行合作讨论,找出异面直线。(3).如图,已知空间四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,试判断四边形EFGH是什么四边形,并证明你的结论。(用课件给出例2)证明:连结BD∵E、H分别是AB、AD的中点∴EH是△ABD的中位线∴EH∥BD,且EH=BD同理,FG∥BD,且FG=BD∴EH∥FG,且EH=FG∴四边形EFGH是平行四边形小组合作探究:在例2中,若加上条件AC=BD,那么这个四边形是什么四边形?(菱形)GFHEBCDGFHEBCDA①求BC和EG所成的角是多少度?②求AE和BG所成的角是多少度?(答案:450;600)6.课堂小结异面直线的定义:不同在任何一个平面内的两条直线叫做异面直线。空间两直线的位置关系:相交直线、平行直线、异面直线异面直线的画法:用平面来衬托异面直线所成的角:平移,转化为相交直线所成的角公理4(平行公理):在空间平行于同一条直线的两条直线互相平行.等角定理:空间中,如果两个角的两边分别对应平行,那么这两个角相等或互补.异面直线所成角的求法:一作(找)二证三求7、课后作业:(1)(必做):复查并修改《课前预习》,补充完善听课案(2)(分层达标):ⅰ:双基自诊ⅱ:巩固提高思考:EABFDC“若直线a与直线b异面,直线b与直线EABFDC答:不一定。注:异面直线不具有传递性如图,正四面体A-BCD中,E、F分别是边AD、BC的中点,求异面直线EF与AC所成的角?思考:在此题中,连接AC,若有AC=BD,则四边形EFGH是什么图形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 城市排水系统改造招标意见
- 电视媒体收费规范:发票管理办法
- 城市供水项目钻井工程施工合同
- 水厂石材施工合同
- 办事处员工福利与关怀措施
- 医疗文创企业人才引进协议书
- 污水处理承台施工合同
- 矿山校车司机招聘合同
- 燃气发电厂电气改造招投标方案
- 停车场周边道路改善协议
- 药品开发与上量-宿家荣
- 以色列DDS门禁系统 Amadeus 5 技术培训使用手册
- 北京海淀区初一上数学期末试题(带标准答案)_
- 易制毒化学品购买申请表申请
- 化工原理课程设计空气中丙酮的回收工艺操作
- 餐饮部每日工作检查表
- 《生命安全教育》体会(徐超)
- 先进物流理念主导和先进物流技术支撑下的日本现代物流
- 建筑小区生雨水排水系统管道的水力计算
- 大型商业综合体消防安全管理规则2020年试行
- 视光学检查用视标及相应的提问方式、有效镜度换算表、视光学检查表
评论
0/150
提交评论